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Global demand for donated blood far exceeds supply, and unmet need is great-

est in low- and middle-income countries; experts suggest that large-scale coor-

dination is necessary to alleviate demand. Using the Facebook Blood Donation

tool, we conduct the first large-scale algorithmic matching of blood donors

with donation opportunities. While measuring actual donation rates remains

a challenge, we measure donor action (e.g., making a donation appointment)

as a proxy for actual donation. We develop automated policies for matching

donors with donation opportunities, based on an online matching model. We

provide theoretical guarantees for these policies, both regarding the number of

expected donations and the equitable treatment of blood recipients. In simula-

tions, a simple matching strategy increases the number of donations by 5-10%;

a pilot experiment with real donors shows a 5% relative increase in donor ac-

tion rate (from 3.7% to 3.9%). When scaled to the global Blood Donation tool

user base, this corresponds to an increase of around one hundred thousand

users taking action toward donation. Further, observing donor action on a

social network can shed light onto donor behavior and response to incentives.

Our initial findings align with several observations made in the medical and

social science literature regarding donor behavior.
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1 Introduction

Blood is a scarce resource; its donation saves the lives of those in need. Countries approach

blood donation in different ways, running the gamut from privately-run to state-run programs,

with or without monetary compensation, and with varying degrees of public campaigns for

action.1 As such, blood donation rates differ across different countries; for example, approxi-

mately 3.2%, 1.5%, 0.8%, and 0.5% of the population donates in high-, upper-middle-, lower-

middle-, and low-income countries, with varying rates of voluntary versus paid donors (4).

Yet demand for blood still far exceeds supply, and unmet need is greatest in low- and middle-

income countries (5). Thus, experts suggest that the blood supply chain—collection, testing,

processing, storage, and distribution—be managed at a national level (4, 5).

Optimization-based approaches to blood supply chain management have a rich history in the

operations research and healthcare management literature. (2) reviews over 100 publications in

this space since 1963. The supply chain is roughly split into collection, testing & processing,

storage & inventory, and distribution & transfusion (6). Substantial research effort has gone

into each of those segments (7–11). Yet, we note that most optimization-based research in the

initial collection stage of the blood supply chain has focused on prediction of blood supply (e.g.,

during a crisis). In this work, we instead focus on the creation and coordination of blood supply

via automated social prompts, subject to the expressed preferences and constraints of potential

donors and the overall donation system. That is, we focus on the donor recruitment stage of the

blood supply chain (see Figure 1).

Donor recruitment has also been a topic of study for decades. Factors like social pres-

sure (12), empathetic messaging (13), and non-monetary incentives (14) can increase donation

1Some examples follow. China maintains state control of its donation centers, which take a mix of captive-,
quota-, and voluntary-based donations (1). The US mixes state- and private-run donation that is primarily sourced
via voluntary donations (2). Brazil has seen a recent shift from remunerated to non-remunerated (aka voluntary)
donation at its initially state-run, and now Federally-run, centers (3).
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Figure 1: Stages of the blood supply chain. Our work—donor recruitment—precedes the four
stages of the blood supply chain as described in (2).

rates. Negative past experiences, and real or perceived barriers to donation, can also impede

donation rates (15–17). Most importantly, this body of work suggests that different donors are

motivated by different factors. In other words, personalized recruitment strategies—which re-

spect diverse donor motivations, preferences, and perceived barriers to donation—should be

more effective than a uniform recruitment strategy.

Our work leverages the widespread use of web-based applications (apps) and social media

platforms, which already play a substantial role in blood donor recruitment. The American Red

Cross, which provides about 40% of transfused blood in the United States,2 recently launched

an app to connect blood donors with donation opportunities.3 A review by (18) identifies 169

free mobile apps for blood donation; though many of these apps have usability and privacy

issues that may prevent widespread use. In a survey of donors at a German hospital, (19) finds

that social media platforms Jodel and Facebook are a major motivation for donation—especially

for first-time donors. Similar studies find that WhatsApp and Twitter help promote donation in

Saudi Arabia (20) and India (21).
2https://www.redcrossblood.org/donate-blood/how-to-donate/how-blood-

donations-help/blood-needs-blood-supply.html
3https://www.redcrossblood.org/blood-donor-app.html
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Figure 2: (a) The Facebook Blood Donation tool interface, where users can search for do-
nation opportunities, and opt in to receive notifications about nearby opportunities as they
arise. (Source: https://about.fb.com/news/2018/06/making-it-easier-
to-donate-blood.) (b) an example matching graph, with donors (Facebook users who
opt in to receive notifications about nearby opportunities), recipients (e.g., hospitals and blood
banks), and edges (potential notifications that can be sent to donors).
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Herein we propose a personalized donor recruitment strategy using the recently developed

Facebook Blood Donation tool,4 which connects millions of potential blood donors with oppor-

tunities to donate, in several countries around the world. Users of this tool can opt in to receive

notifications about nearby donation opportunities. Our strategy aims to notify donors about

opportunities they are more likely to take action on. We frame this notification scenario as an

online bipartite matching problem (22)—a well-studied paradigm which has been applied to a

variety of settings including online advertising (23) and rideshare services (24–26). We demon-

strate, both in computational simulations and in a real A/B test, that even a simple matching

policy can substantially increase the likelihood of donor action.

2 Online Platform: the Facebook Blood Donation Tool

The advent of global social networks offers a unique opportunity to recruit and coordinate mas-

sive numbers of donors, in order to meet a large and unpredictable demand for donor blood. The

Facebook Blood Donation Tool aims to seize this opportunity—leveraging the widespread use

of its online platform to connect blood donors with nearby recipients (see Figure 2a). Donors

can also opt in to receive notifications about nearby donation opportunities. This tool is avail-

able in several countries around the world;5 as of December 2020, more than 85 million people

have registered with this tool.6

In this paper we focus on a small but important feature of the Blood Donation Tool: auto-

matic donor notifications. Our primary goal is to increase the number of blood donations around

the world by carefully selecting which opportunity to notify each donor about, and when to no-

4https://socialgood.fb.com/health/blood-donations/
5As of February 2021, the Blood Donation Tool has been approved in Bangladesh, Brazil, Burkina Faso, Chad,

Cote d’Ivoire, Egypt, England, Guinea, Hong Kong, India, Kenya, Mali, Mexico, Mongolia, Namibia, Netherlands,
Niger, Northern Ireland, Pakistan, Peru, Rwanda, Senegal, South Africa, the United States, Taiwan, Wales and
Zimbabwe (see https://socialimpact.facebook.com/health/blood-donations/).

6https://socialimpact.facebook.com/health/blood-donations/.
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tify them. We frame this question of donor notifications as an online matching problem. One

might ask whether such a complicated approach is warranted in this setting—perhaps it does

not matter how and when donors are notified. To better motivate our approach, we first answer

the question: how can we tell whether a Facebook user donates blood after we notify them?

2.1 Measuring Donation: Meaningful Action.

To design notifications that effectively encourage blood donation, it is necessary to know when

donations occur. However social networking platforms like Facebook cannot directly observe

a user’s action outside the platform. As a proxy, we instead observe when a donor takes mean-

ingful action toward donation after being notified. In our context, Meaningful Actions (MA)

include user behaviors such as creating a reminder to donate, or calling a blood bank; note that

these actions are only observed if taken within the Facebook platform.

It is beyond the scope of this study to validate MA as a proxy for actual donation, however

initial results indicate that MA is a reliable indicator. For example, a 2018 Facebook study

with its partner donation sites in India and Brazil found that 20% of donors said that Facebook

influenced their decision to donate blood.7 In the remainder of this paper, we focus on increasing

the number of donor MAs as a proxy for increasing the number of donations. Our goal is to

design a notification policy that chooses both (a) when to notify a donor, and (b) which donation

opportunity to notify them about. The next step in designing this policy is to understand which

notifications are likely to prompt donor MA. We begin with some high-level observations.

As an initial analysis we consider all notifications sent to donors using the Facebook Blood

Donation tool over a one-month period.8 Below we describe some high-level observations; we

leave a deeper analysis to future work.

1. Users rarely take meaningful action in response to notifications: between 3% and 4%
7Ibid.
8Hundreds of millions of notifications.
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of all notifications lead to meaningful action.

2. More-engaged donors are more likely to take meaningful action: Donors who tend to

use Facebook every day are about 43% more likely to take meaningful action in response

to a notification than those who use Facebook about once per week.

3. New users are more likely to take action: donors who joined Facebook within the last

year are about 35% more likely to take action in response to a notification that those who

have been users for longer.

4. Older donors are more likely to take action: donors over 30 years old are about 22%

more likely to take action in response to a notification than donors under 30.

5. Donors are more likely to take action if they are notified about a nearby opportunity:

Donors who are notified about opportunities less than 3km away are 20% more likely to

take action than those who are notified about further-away opportunities.

6. Donors are more likely to take action if they haven’t been notified recently: Donors

who haven’t been notified about a donation opportunity in the past 60 days are about 12%

more likely to take action in response to a notification than those who have been notified

in the past 60 days.

We emphasize that several of these observations have been reflected in prior studies: (1)

reflects the observation of (12) and (19) that social pressure and influence from family or friends

can increase donation rates. (5) reflects the finding of (15) and (16) that logistical barriers to

donation can impede donation rates. (6) reflects the finding of (27) that blood donors can be

burdened by receiving too many notifications.

The likelihood of donor MA varies significantly across several features of both the blood

donor (e.g., when they were last notified) and donation opportunity (e.g., location). To better

7



0.0 0.2 0.4 0.6 0.8
Predicted Likelihood of MA

0.00

0.05

0.10

De
ns

ity
Figure 3: Density of estimated likelihood of MA, for all notifications in the training data.

understand these dependencies we train a predictive model for estimating likelihood of donor

MA, using all available data from prior notifications. This model is used in both our offline and

online experiments.

2.2 Machine Learning Model for Donor Action

To develop a machine learning (ML) model of donor action, we use all prior notifications sent

by the Facebook Blood Donation tool. This model takes an individual notification as input, and

predicts the probability that the donor will take action. Each notification is represented by a set

of features of both the donor and the donation opportunity (i.e., the independent variables); the

dependent variable is binary (i.e., whether or not the donor took MA). Before being deployed,

this ML model and application passed through Facebook’s internal review process to protect

user privacy.

Prior to training this model, we use industry-standard feature selection techniques to iden-

tify the most important features for predicting donor MA; these features are (in decreasing or-

der of importance, with importance percentage in parenthesis): (1) whether the donor recently

took meaningful action (18%), (2) donor age (8.5%), (3) donor city (7.5%), (4) the number of

Facebook friends the donor has (7.3%), (5) the distance between donor and recipient (6.8%).

Other relevant features include the number of local donors (6.5%), number of times a donor has

viewed the hub in the last 30 days, and the number of days since the donor’s last notification.
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Using the selected features, we train a gradient boosted decision tree (GBDT) model. We use

standard parameter-sweep techniques to obtain the learning rate of 0.1, 120 trees, a maximum

tree depth of 5 and a maximum number of leaves of 120. This model is trained using 10-fold

cross-validation on 80% of the the training data and an additional 10% for validation; it achieves

an AUC of 0.66 and logistic loss of 0.45, averaged over all training folds. Training this model is

particularly challenging because of the small number of “positive” examples (i.e., the number

of donor MAs). Figure 3 shows the density of prediction scores returned from this model, over

all training data. Most prediction scores are between 0-10%, with an average of 3.43%—quite

close to the observed likelihood of MA.

We use this model to estimate how likely it is that a donor will take action, when notified

about a particular donation opportunity. Next we describe how this model is used to design a

notification policy: by framing blood donor recruitment as a matching problem.

3 Matching Framework for Blood Donation

We represent a blood donation problem as a weighted bipartite donation graph G = (U, V,E),

with donors u ∈ U and donation opportunities (or recipients) v ∈ V .9 Each vertex has a set

of attributes (e.g., blood type, geographical location, and so on), and these attributes determine

whether a donor u can donate to a recipient v—i.e., whether u and v are compatible. Compatible

pairs (u, v) are connected by edges e = (u, v) ∈ E; we denote all edges adjacent to vertices

u ∈ U (v ∈ V ) as Eu: (E:v).

If an edge e = (u, v) exists, then donor u can be notified about v.10 We discretize time into

days t ∈ T ≡ {1, . . . T}, with a finite-time horizon T . In our setting both donors an recipients

9We use the terms “donors” and “recipients” as shorthand for prospective donors and recipients. Facebook does
not make any determination about a person’s eligibility to donate blood; these are potential donors who sign up to
receive notifications of blood donation opportunities.

10In this initial work, we assume the set of potential donors and donation centers do not change, although this
longer-term dynamism is certainly interesting to consider as future research.
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are dynamic, in the sense that some donors and recipients are available at certain time steps.

This notion of dynamism is designed specifically to represent a blood donation setting.

We assume that donors may receive only one notification at each time step, however any

number of donors may be notified about the same recipient on any time step. Thus, our setting

more-closely resembles b-matching (28) than traditional bipartite matching.

Edge Weights: Each edge (u, v) has weight equal to the probability that donor u donates to

recipient v once notified (i.e., the predicted MA likelihood, see §2.2); we assume that edge

weights wet are indexed by edge e and time step t. In other words, some edges (notifications)

are more likely than others to result in donation: for example, certain people may be more likely

than others to donate (e.g., people who have donated frequently in the past, as observed by (29))

and people may prefer to donate on specific days more than others.

Recipients: We consider both static recipients S ⊆ V , such as blood banks and hospitals, and

dynamic recipients (or events) D ⊆ V , such as blood drives or emergency requests. Static re-

cipients are available during all time steps, and edges into these recipients are always available.

Events arrive in an online manner, and are available only during certain time steps. We assume

that the distribution of recipient availability is known and defined by pvt ∈ [0, 1]: the probability

that recipient v is available at time t. The distribution of recipient arrivals pvt is assumed to be

known; this is a primary input to our matching algorithms. We use p̂vt to denote a realization of

recipient arrivals, which is 1 if donor v is available at time t and 0 otherwise. We assume that

realized recipient arrivals p̂vt are revealed on each time step t. In other words, at time step t′ all

realized arrivals p̂vt are known for time steps t with 1 ≤ t ≤ t′.

Donors: After a donor signs up with the Facebook Blood Donation Tool, we say they are

available to receive notifications (i.e., to be matched) at any time. While there is essentially no
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limit on the number of notifications that can be sent on via online platform, there is a legal limit

on how often people can donate blood. This limit is meant to protect donor health, and is often

set by local governments or health authorities.11 Thus, due to legal and health considerations,

and out of respect for donors’ time and attention, we limit how often each donor is notified: this

limit is one notification every K ∈ Z+ days. Since not all notifications lead to donation, it is

reasonable to set K to 7 or 14 days—much shorter than the donation rate limit.

Balancing Priorities: In general there are several priorities when matching blood donors and

recipients: we aim to increase the number of active blood donors, maximize the number of

donations, respect donor privacy and preferences, satisfy recipients’ needs, and so on. Deciding

which of these policies is most important is a matter of policy, and is beyond the scope of

this paper. Here we consider two priorities which we believe are relevant to any blood donor

matching platform: (a) increasing the overall number of donations from a fixed donor pool,

and (b) treating recipients equitably. While the justification for priority (a) is perhaps obvious,

priority (b) requires more discussion.

3.1 Equitable Treatment of Recipients

In an online blood donor matching platform, notification policies have a far greater potential

to impact recipients than donors. From a donor’s perspective, a change in notification policy

might mean that they receive notifications at a slightly different rate, or that they are encouraged

to donate to a different recipient. (Recall that donors can always browse for opportunities

using the Blood Donation tool; they need not pay attention to notifications.) However from

a recipient’s perspective, a change in notification policy can drastically impact the number of

notifications encouraging donors to visit their facility. For example if predictive models suggest

that edge weights to centrally-located hospitals are high, while edge weights to rural hospitals
11Typically 8 weeks or longer; see https://www.redcrossblood.org/faq.html.
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are near zero, then a simple edge-weight-maximizing policy would never notify donors about

rural hospitals (indeed we report a similar distance-based effect in Section 5). Furthermore,

two-sided matching platforms—such as the Facebook Blood Donation tool—are most effective

when both sides of the market benefit from participating. If donors are never notified about

rural recipients then these recipients might choose to leave the platform, which is a strictly

worse outcome for everyone. For these reasons we consider the fairness of different notification

policies.

Our approach is inspired by the problem of fair division in economics (30), and specifically

the notion of weighted proportional fair division (31). In weighted proportional fair division,

a finite set of resources is divided among agents such that each agent values their allocation

proportional to their weight—where greater weight represents greater endowment or priority. In

our setting, different recipients have different numbers of compatible donors (e.g., due to their

location), or different edge weights (e.g., due to donor preferences or recipient accessibility); it

may not be reasonable to, for example, guarantee that each recipient is matched with the same

total edge weight. Instead we endeavor to match each recipient with edge weight proportional

to their normalization score—where normalization scores are provided as input to the matching

policy. Furthermore, since individual edges cannot be divided between recipients, it is not

always possible to guarantee exact proportionality for all recipients. Instead we use a relaxed

notion of proportionality, based on the normalized edge weight matched with each recipient.

Definition 1 (γ-Proportional Matching). Let Yv be the total weight matched with recipient

v over time horizon T , and let mv be the normalization score for v. This matching is γ-

proportional for γ ∈ (0, 1] if

γ
Yv′

mv′
≤ Yv
mv

for each v, v′ ∈ V .
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In other words, a matching is γ-proportional if the normalized matched weight for recipient

v is at least fraction γ ∈ (0, 1] of the normalized matched weight for all other recipients. Note

that with γ = 1, all recipients receive the same normalized matched weight.

By this definition, it is always γ-proportional to allocate zero matched weight to all recip-

ients (i.e., Yv = 0 for all v ∈ V ); we refer to this the empty allocation. We are interested

in non-empty allocations; thus, one might wonder how hard it is to find any γ-proportional

allocation which matches at least one edge. We refer to this as the γ-proportional allocation

problem.

Definition 2 (γ-Proportional Allocation Problem). Input: γ ∈ (0, 1], donation graph G =

(U, V,E), edge weights we ∈ R+ for each e ∈ E, and normalization scores mv ∈ R+ for each

v ∈ V . All recipient availability is known ahead of time. Does there exist a non-empty set of

edges in E ′, with E ′ ⊆ E, which covers each donor at most once, and is γ-proportional to all

recipients?

Theorem 1. The γ-proportional allocation problem is NP-hard for every γ ∈ (0, 1].

In other words, it is intractable to identify a γ-proportional allocation when recipient avail-

ability is known. Furthermore, recipient availability is often unknown: some recipients may

host regular week-long blood drives, and others may only accept donation in response to pa-

tient needs. Instead we focus on proportionality in expectation—over all possible realizations

of recipient availability.

4 Matching Policies

We aim to match donors with recipients such that we maximize edge weight (maximize the

number of MAs), such that the outcome is γ-proportional for recipients. Here we define match-

ing policies which trade off between both of these goals. These policies assume that donor
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availability is fixed, that is, we are given as input the time steps in which each donor can be

notified. This is a natural constraint for fielded notification systems, which may only notify

donors, for example, on certain days of the week. In the Electronic Companion (C) we briefly

discuss policies which also select when to notify each donor.

Each matching policy takes as input a bipartite graph G = (U, V,E) with edge weights wet,

normalization scores mv, recipient arrival distribution pvt, and time horizon T . At each time

step t, all observed demand realizations p̂vt′ for all t′ ≤ t are “revealed” to the policy, and may

be used as input.

We use parameters aut to denote the (exogenous) donor availability on each time step: donor

u may be matched on time step t only if aut = 1. We denote the set of available edges for

recipient u on time t by Et
u: ≡ {(u′, v′) ∈ E | u′ = u, aut = p̂v′t = 1}.

In order to benchmark practical matching policies, we compare them with an unrealistic

offline optimal policy, which has complete knowledge of the “true” demand realization p̂vt. The

offline optimal policy is defined using any optimal solution to Problem 1.

max
∑
t∈T

∑
e∈E

wetxet

s.t. xet ∈ {0, 1} ∀e ∈ E t ∈ T
sv ∈ R ∀v ∈ V
xet ≤ p̂vtaut ∀e = (u, v) ∈ E, t ∈ T∑
e∈Et

u:

xet ≤ aut ∀u ∈ U, t ∈ T

sv = 1
mv

∑
t∈T

∑
e∈Et

:v

xetwet ∀v ∈ V

γsv ≤ sv′ ∀v, v′ ∈ V, v 6= v′.

(1)

Here variables xet are 1 if edge is matched at time t and 0 otherwise; auxiliary variables sv

denote the normalized matched weight for recipient v. An offline optimal policy for this setting

is defined using an optimal solution to Problem 1.

Definition 3 (Offline Optimal Policy OPT(γ)). Let x∗et be an optimal solution to Problem 1, for

demand realization p̂et. At each time t ∈ T , OPT(γ) matches all edges e ∈ E such that x∗et = 1.
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Policy OPT(0) refers to the offline-optimal matching policy without proportionality constraints.

Corollary 1. It is NP-hard to identify policy OPT(γ), for every γ ∈ (0, 1].

As a direct corollary of Theorem 1, Problem 1 is NP-hard for every γ ∈ (0, 1]. Thus, even

if the demand realization is known, it is computationally hard to find an optimal matching. Of

course, in realistic settings the demand realization is not known. Instead, our proposed policies

use distributional information (exogenous parameters pvt) to match donors and recipients. We

compare these realistic policies to OPT(γ) using two evaluation metrics:

Competitive Ratio. Let E[OPT(0)] be the expected matched weight by OPT(0), over all

demand realizations. Let E[ALG] be the expected matched weight by matching policy ALG,

over all demand realizations and (if ALG is stochastic) all policy realizations. The competitive

ratio is

CR ≡ min
G,p,a

E[ALG]

E[OPT(0)]
,

where the minimization is over all possible matching graphs, demand distributions, and donor

availability. In other words, CR is the worst-case ratio of expected matching weight over all

possible matching scenarios.

Expected Proportionality. LetE[Yv] be the expected weight matched by an a matching policy,

over all demand realizations and (if ALG is stochastic) all policy realizations. The expected

proportionality of policy ALG is

EP ≡ min
G,p,a

max
γ∈[0,1]

{γE[Yv]/mv ≤ E[Yv′ ]/mv′ ∀(v, v′) ∈ V, v 6= v′},

where as before mv is a fixed normalization score for recipient v, and the minimization is over

all possible graphs, demand distributions, and donor availability. In other words, if policy ALG

is guaranteed to be γ-proportional in expectation then EP = γ. Note that EP may be 0,

meaning that there is no γ > 0 such that the expected outcome is γ-proportional.
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For the remainder of this section we assume that agent normalization scores are determined

by a uniform random notification policy, defined below.

Definition 4 (Uniform Random Policy Rand (fixed-time)). At each time step t ∈ T , for each

available donor u: Rand matches u using an edge in Et
u: chosen uniformly at random.

Definition 5 (Normalization Score mv). Let E[Yv] be the expected weight matched with re-

cipient v, over all recipient demand realizations and (for randomized policies) over all policy

realizations. The scaling factor for recipient v is mv ≡ E[Uv].

Using these normalization scores we imply that policy Rand, and its outcome, are “fair”;

we emphasize that this is only one choice of normalization scores, and in practice the notion of

fairness/proportionality should be defined by stakeholders.

Metrics CR and EP help us characterize the expected performance of fixed-time matching

algorithms. In the following two sections we analyze two classes of policies: myopic policies

use only information from the current time step to make matching decisions (this includes both

policies implemented in our online experiments); non-myopic policies take into account the

demand distribution for future time steps.

Myopic Policies only take into account the information available at each time step. We con-

sider two simple baseline myopic policies, Max and Rand (defined above). Policy Max is

defined below.

Definition 6 (Max-Weight Policy Max). At each time step t ∈ T , for each available donor u:

let W ≡ maxe∈Et
u:
wet be the maximum edge weight for any of u’s available edges at time t.

Max matches u using any edge in Et
u: with edge weight W , and if multiple edges have weight

W then one is chosen randomly.

First, note that Rand has EP = 1 by definition. On the other hand, Max does not.
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Lemma 1. Max is EP = 0; that is, in the worst case Max is 0-proportional in expectation.

Intuitively Max ignores normalization weights mv, meaning that it does not guarantee pro-

portionality. In the worst case, Max can leave some recipients can unmatched, meaning that

EP = 0. On the other hand, Max always maximizes matched weight.

Lemma 2. Max achieves competitive ratio CR = 1. Further, without proportionality con-

straints (γ = 0), Max is equivalent to an offline-optimal policy (OPT(0)).

On the other hand, since Rand ignores edge weight, its worst-case competitive ratio is low.

Lemma 3. Rand achieves a competitive ration of at most CR = 1/N when there are N

recipients.

Baseline policies Max and Rand represent two ends of a spectrum: on one side, Max pri-

oritizes maximizing edge weight, at the cost of proportionality for recipients; on the other side,

Rand treats all recipients “fairly” (for one specific notion of fairness), but does not prioritize

edge weights. To balance these objectives in a principled way, we might randomly choose be-

tween Max and Rand at each time step, for each donor. This is the purpose of myopic policy

RandMax, defined below.

Definition 7 (Hybrid Policy RandMax(gamma)). At each time step t ∈ T , and for each avail-

able donor u ∈ U , this policy randomly chooses to (a) match the donor using policy Max (with

probability 1− γ), or (b) match the donor using policy Rand (with probability γ).

Since this policy randomly mixes Max (which is equivalent to an offline-optimal policy

with γ = 0), and Rand (which is a “perfectly” proportional policy in this setting), this hybrid

policy effectively balances the objectives of maximizing matched weight and proportionality

for recipients.
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Lemma 4. RandMax(γ) has CR = 1− γ and EP = γ, for all γ ∈ [0, 1].

In other words, this hybrid policy strikes a balance between matched weight (CR) and pro-

portionality (EP ), set by parameter γ. However this hybrid policy may not be Pareto optimal:

for γ ∈ (0, 1) there may be another policy with stronger guarantees on both proportionality EP

and competitive ration CR.

We leave the task of identifying a Pareto optimal policy to future work; instead we propose a

class of stochastic policies with moderate guarantees on CR and EP , though their performance

is far better than these guarantees in computational experiments.

The policies introduced in this section are based on the optimal solution to an LP formula-

tion of our matching problem. As a baseline for these policies we use an LP relaxation of the

offline optimal MILP, Problem 1. We refer to this relaxation as Problem 1-LP (not stated ex-

plicitly). This problem is nearly identical to Problem 1, with two differences: (1) variables xet

are continuous (on interval [0, 1]) rather than binary, and (2) demand realization p̂vt is replaced

by demand distribution pvt.

Before defining matching policies based on Problem 1-LP, we make some important obser-

vations. First, Problem 1-LP yields a valid upper bound for Problem 1

Lemma 5. Let ZLP denote the optimal objective of Problem 1-LP for a matching problem

defined by U, V,E,mv, pvt, T and γ ∈ [0, 1]. Let E[OPT(γ)] be the expected objective of the

offline-optimal policy, over all demand realizations. Then, ZLP ≥ E[OPT(γ)].

This result lets us use Problem 1-LP as an upper-bound on the matched weight for any

matching policy; we use this as a baseline for which to compare other matching policies.

We consider two classes of LP-based policies: non-adaptive policies (which pre-commit to

a set of edges that may be matched), and adaptive policies (which may change their matching

decisions at each time step).
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4.1 Non-adaptive Policies

We consider a class of non-adaptive policies which pre-match at most one edge for each donor at

each time step—that is, matching decisions may not adapt at each time step as new information

is revealed. At each time step, if the donor is pre-matched to an edge and the edge’s recipient is

available, then this edge is matched; otherwise the donor remains unmatched during this time

step. Of course, this does not guarantee that all donors are matched at each time step—and

therefore the competitive ratio can be quite low.

Warm-Up: Policies based on Problem 1. First we consider a non-adaptive policy based on

an optimal solution for Problem 1-LP.

Definition 8 (NAdapLP(α, γ)). Let x∗et denote an optimal solution to Problem 1-LP with pro-

portionality parameter γ ∈ [0, 1] and α ≥ 0. For each time step t ∈ T and each donor u ∈ U ,

edge e ∈ Eu: is pre-matched with probability αx∗et/pvt, and the donor is not pre-matched with

probability 1 − α
∑

e=(u,v)∈Eu:
x∗et/pvt. At each time step, all donors are matched using their

pre-matched edge, if the pre-matched donor is available.

In this policy, parameter α is a scaling factor used to ensure that each edge assignment

distribution is valid—that is, that α
∑

e=(u,v)∈Eu:
x∗et/pvt ≤ 1 for all u ∈ U . Note that this policy

can only be implemented if each of these distributions are valid. Conveniently, the probability

that any edge is matched by NAdapLP(α, γ) is expressible in terms of the optimal solution to

Problem 1-LP used to define this policy.

Lemma 6. Let x∗et be the optimal solution used in policy NAdapLP(α, γ). The unconditional

probability that edge e is matched at time t by policy NAdapLP(α, γ) is αx∗et.

Lemma 6 leads to some additional observations about this policy.
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Corollary 2. NAdapLP(α, γ) has competitive ratio CR = α.

Corollary 3. NAdapLP(α, γ) is always γ-proportional in expectation, that is, EP = γ.

Both corollaries follow directly from Lemma 6 and the constraints of Problem 1-LP. These

results suggest that we can arbitrarily increase the weight matched by NAdapLP(α, γ) by in-

creasing α; however these policies are not guaranteed to be valid. This policy can only be

implemented if α is small enough that each edge assignment distribution is valid.

Lemma 7. Policy NAdapLP(1/D, γ) is always valid and achieves a competitive ratio of CR =

1/D and EP = γ for all γ ∈ [0, 1], where D is the maximum degree of any donor: D ≡

maxu∈U |Eu:|.

In other words, Policy NAdapLP(1/D, γ) is always implementable; thus there always exists

a non-adaptive policy which achieves expected proportionality EP = γ and competitive ratio

CR = 1/D for all γ ∈ [0, 1]. This competitive ratio guarantee is quite weak, and we might ask

whether a better non-adaptive policy exists. Indeed it does, and we discuss this policy next.

Optimal γ-Fair Non-Adaptive Policies Here we aim to identify a policy which is γ-proportional

in expectation (EP = γ), and also maximizes matched weight (and thus CR); we refer to this

as an optimal γ-proportional non-adaptive policy. To identify this policy, we first observe that

any non-adaptive policy can be characterized by the probability that it pre-matches edge e at

time t: yet ∈ [0, 1]; using these statistics, the unconditional probability that e = (u, v) is

matched at time t is yetpvt. Note that for any non-adaptive policy, the probability that donor u

is pre-matched at time t is at most 1 if u is available and 0 otherwise; thus, statistics yet must

satisfy conditions
∑

e∈Eu:
yet ≤ aut for all u ∈ U , and t ∈ T . If a non-adaptive policy is

γ-proportional, then yet must satisfy conditions

γsv ≤ sv′ ∀v, v′ ∈ V
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with

sv =
1

mv

∑
t∈T

∑
e∈Et

:v

yetpvtwet ∀v ∈ V.

Aggregating these conditions, we observe that the statistics yet of any γ-proportional non-

adaptive policy is a feasible solution to the following LP.

max
∑
t∈T

∑
e∈E

wetyetpvt

s.t. yet ∈ [0, 1] ∀e ∈ E t ∈ T
sv ∈ R ∀v ∈ V∑
e∈Eu:

yet ≤ aut ∀u ∈ U, t ∈ T

sv = 1
mv

∑
t∈T

∑
e∈Et

:v

yetpvtwet ∀v ∈ V

γsv ≤ sv′ ∀v, v′ ∈ V, v 6= v′.

(2)

Furthermore, a solution to Problem 2 corresponds to a non-adaptive policy; we use an optimal

solution to this problem to define a γ-proportional non-adaptive policy.

Definition 9 (NAdapOpt(γ)). Let y∗et be an optimal solution to Problem 2. For each time

step t ∈ T and each donor u ∈ U , a pre-matched edge is drawn with probability y∗et; with

probability 1−
∑

e∈Et
u:
y∗et, no edge is pre-matched. At each time step t and for each available

donor u, if the donor is pre-matched with an available recipient, then the pre-matched edge is

matched.

Lemma 8. NAdapOpt(γ) achieves expected proportionalityEP = γ and maximal competitive

ratio over all non-adaptive policies, with CR ≥ 1/D (where D is the maximum degree of any

donor).

Both non-adaptive policies described in this section are γ-proportional in expectation (EP =

γ), thought their competitive ratio guarantee is somewhat weak. This is expected, since non-

adaptive policies cannot change their matching decisions between time steps—they pre-match

at most one edge for each donor at each time step. Some pre-matched edges will in fact be

unavailable, depending on the particular demand realization (which is not known in advance).
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4.2 Adaptive Policies

Adaptive policies can use any available information in order to make matching decisions—

including observed demand realizations, prior matching decisions, and the distribution of future

demand. We leave a general characterization of adaptive policies to future work; here we con-

sider a simple class of adaptive policies that naturally extends the non-adaptive policies from the

previous section. This policy class, AdaptMatch, takes as input the set of edges pre-matched

by a non-adaptive policy, denoted by M , where Mut = e ∈ E if u is pre-matched along edge

e at time t, and Mut = ∅ if u remains unmatched at time t. AdaptMatch uses pre-matched

edges when possible, and if a pre-matched edge is not available it matches donors using either

Rand (with probability γ) or Max (with probability 1 − γ). Algorithm 1 gives a pseudocode

description of this matching algorithm.
ALGORITHM 1: AdaptMatch: Adaptive matching policy
Input: donors V , recipients U , edges E, time steps T , donor availability, pre-matched edges Mut,

parameter γ ∈ [0, 1].
Output: Matched edges at each time step

1 for each time step t ∈ T do
2 for each available donor, u do
3 if u has a pre-matched edge Mut, and this edge is available then
4 Match u using pre-matched edge Mut;
5 else
6 Flip a weighted coin with “heads” probability γ;
7 if heads then
8 Match u with policy Rand;
9 else

10 Match u with policy Max;

Note that this adaptive policy matches strictly more edges (in expectation) than their non-

adaptive counterparts. Thus, expected matched weight (andCR) is strictly larger for AdaptMatch

than the non-adaptive policy it is based on.

While competitive ratio is at least as large for these policies (CR ≥ 1/D) as for their

non-adaptive counterparts, there is no meaningful guarantee on expected proportionality. We

leave more sophisticated adaptive policies to future work. However, while these approximate
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adaptive policies do not have strong guarantees onCR orEP , they perform far better than these

guarantees well in computational experiments (see § 5.1).

5 Results

Prior to deploying new matching policies in an online setting, it is important to assess their

performance in simulations. Section 5.1 outlines computational simulations with real data from

the Facebook Blood Donation Tool, using our proposed matching policies; Section 5.2 describes

our online experiment with the Facebook blood donation tool. In the Electronic Companion (A)

we also present results using synthetic, publicly available data.

5.1 Computational Simulations

We developed open-source simulation code for these simulations, which implements each of our

proposed policies; details of these simulations are discussed in the Electronic Companion A. All

code used in these simulations is available in the supplementary material, and on Github.12 Data

related to the Facebook blood donation tool cannot be released due to concerns for user privacy.

We test each matching policy from the previous section using data from the Facebook Blood

Donation tool, and we ran separate simulations for 12 major cities around the world. For each

city we create a blood donation graph, consisting of donors V and recipients U registered with

the Blood Donation tool; edges are created between donors and recipients within 15km of each

other, and edge weights are calculated by the GBTD models described in Section 2.2. Each of

these cities has on the order of 1000 donors, 100 recipients, and 100,000 edges.

We require that donors are notified exactly once every K = 14 days, and the first day each

donor is notified is chosen randomly from t ∈ {1, . . . , 13}; recipient availability parameter pvt

are determined from past notifications. The realized recipient availability used in these exper-

12Link removed during review. All code is included in the supplementary file code.zip.
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iments is randomly drawn using parameters pvt, and this realization is fixed for the remainder

of the experiment. Each simulation runs for 60 days, so each donor is notified exactly 4 times.

Since policies Rand and AdaptMatch are random, we run 50 independent trials with these

policies. We define recipient normalization scores mv as the average weight matched to v over

all 50 trials of Rand.

For policy Max we calculate the total matched weight, and for Rand and AdaptMatch

we calculate the average matched weight over all trials. We also calculate the (average) weight

matched to each recipient, Yv. Using the recipient weights we calculate a measure of propor-

tionality Gamma, defined as

Gamma ≡ max{γ ∈ [0, 1] | γYv/mv ≤ Yv′/mv′∀v, v′ ∈ V }.

Simulation Results Simulation results for all 12 cities are shown in Figure 4. For each city we

simulate matching using policies Max, Rand, and AdaptMatch. We implement several ver-

sions of AdaptMatch: each uses a fixed parameter γ ∈ {0.0, 0.1, . . . , 1.0}, and pre-matched

edges M ≡ NAdapOpt(γ). These plots in Figure 4 illustrate the trade-off between overall

matched weight and proportionality (or fairness) for recipients. While Max maximizes matched

weight in this setting, it does not guarantee a proportional outcome: in all cities except for City

1 and City 9, Gamma is zero for Max, meaning that some recipients are never matched by this

policy. On the other hand, Rand is proportional by definition (and Gamma = 1), though this

policy does not maximize matched weight. However, Rand always matches at least 90% of the

maximum possible matched weight in all simulations, and more than 95% in five out of the 12

cities.

While policy AdaptMatch does not have strong guarantees on matched weight or propor-

tionality, it mediates smoothly between the extremes of Rand and Max, according to parameter

γ. In some cases, this policy matches more weight than Rand, while still achieving a nearly-
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Figure 4: Simulation results for 12 cities around the world. Each plot corresponds to one 60-
day trial in each city. The vertical axis shows the fraction of matched weight, compared to Max;
the horizontal axis shows proportionality metric Gamma. Policy Max is shown as a red circle,
Rand is a blue “×”, and AdaptMatch is a green “+” (for γ = 0.0, 0.1, . . . , 1.0. Arrows on
each plot indicate the values of γ used by AdaptMatch.

25



proportional outcome (Gamma equal to 1), as in Cities 3, 5, and 7.

5.2 Online Experiments

As a proof-of-concept, we compare the max-weight matching policy (Max) to the random base-

line policy (Rand, which is similar in behavior to the notification policy currently used by the

Facebook Blood Donation tool), in an online experiment. The goal of this experiment is to an-

swer the question: can we increase the overall number of donor meaningful actions by carefully

selecting which recipient to notify each donor about. Both of these policies notify donors once

every 14 days; they only differ in which recipient each donor is notified about. Rand selects a

nearby recipient at random, while Max selects a nearby recipient with the greatest likelihood of

donor MA—according to our predictive model.

To compare these policies we design a randomized an online experiment, including hun-

dreds of thousands of donors registered with the Facebook Blood Donation tool. We randomly

partition these donors into a control group (who were notified using policy Rand) and a test

group (who were notified using policy Max). As in our simulations, we include only static re-

cipients (e.g., hospitals and large blood banks), who are always available to receive donations.

Potential Impact on Donors and Recipients. This experiment was approved by an internal

review board. We emphasize that the impact of these experiments is minimal: the only differ-

ence between the test and control group in this experiment is which donation opportunity the

donor is notified about. The impact on blood recipients is less clear: due to our experimental

design we cannot effectively measure the proportionality of each notification policy in a mean-

ingful way. However it is possible that any optimization-based matching policy (e.g., Max or

AdaptMatch) prioritizes certain recipients over others. This may marginalize recipients in

rural areas or those with a limited Facebook presence. More thorough analysis of these impacts
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Table 1: Online Experiments - Number of notifications (#Notifs) and meaningful actions
(#MA), over the online experiment. Notifications are separated into those sent to donors with
only one compatible recipient (1R), and those sent to donors with two or more compatible re-
cipients (+2R). Wilson score intervals are for the percentage of notifications that lead to MA are
presented as C ±R/2, where the 95% confidence interval is [C −R/2, C +R/2].

Notif. Group
Control (Rand) Test (Max)

#MA #Notifs %MA #MA #Notifs %MA

1R 10,534 215,544 4.7± 0.1 10,755 214,841 4.8± 0.1
+2R 15,551 420,230 3.7± 0.1 16,054 412,387 3.9± 0.1

is necessary before more widespread adoption of these policies.

Online Experiment Results This experiment ran from Nov. 23 to Dec. 17, 2019 (25 days); in

total, 1,359,980 donors were notified using either policy Rand or Max. In this experiment many

donors had only one compatible recipient—in this case, the donor was always notified about this

recipient, regardless of the notification policy. For clarity, we distinguish between notifications

sent to donors who had only one compatible recipient (1R), and those sent to donors with

two or more compatible recipients (+2R). Thus we only expect to observe a difference between

control and test groups for +2R notifications; we expect the same outcome for (1R) notifications.

Table 1 shows the number of notifications and meaningful actions for notifications of each type

(1R and +2R), in both the test and control group. Note that only +2R notifications are relevant

for comparing the test and control groups, though we report both for transparency. The key

result in these tables is the percentage of notifications that led to meaningful action (%MA,

a number on [0, 100]). We report the Wilson score interval for %MA as C ± R/2, where

[C −R/2, C +R/2] is the 95% confidence interval.

In the remaining discussion we consider only the +2R notifications, as there is no difference

between the test and control group for 1R notifications. For the overall experiment, %MA is
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about 5% higher for Max than for Rand. To better understand the differences between the

control and test groups, we use two statistical tests to compare the notifications sent by Max

and Rand.

Overall Comparison We use both a two-sided and one-sided Chi-square test to compare

%MA (+2R notifications only) for the control and test groups, over all notifications sent during

this experiment. Let PRand and PMax represent %MA for the control (Rand) and test (Max)

groups, respectively. The two-sided test checks the null hypothesis H0: PRand = PMax, with

alternative PRand 6= PMax; the one-sided test checks null hypothesis H0: PRand = PMax, with

alternative PRand < PMax. We can reject both of these null hypotheses with p � 0.01. In light

of the results presented in Table 1, these statistical test suggests Max achieves a small (∼ 5%)

but significant improvement over Rand in terms of overall %MA. In the next set of statistical

tests we compare each day of the experiment as a separate trial.

Daily Paired Comparison Next we treat day of the experiment as a set of paired measure-

ments of both PRand and PMax. For each day of the experiment (26 days in total) we calculate

sample estimates of PRand and PMax—i.e., the 100 times the ratio of MAs to overall notifications.

Note that donors are notified once every 14 days, meaning that the set of donors notified on any

particular day is nearly disjoint from the donors notified on any other day of the experiment; for

this reason we treat the measurements of PRand and PMax on different days as independent.

We use a two-sided Wilcoxon signed-rank test to check the null hypothesis H0: the median

difference between daily PMax and PRand is zero. We reject this null hypothesis (p � 0.01),

further confirming that notification policy Max yields a higher MA rate than Rand. For illus-

tration, Figure 5 shows the 95% confidence intervals for PRand and PMax, using the aggregated

number of notifications and MAs for each day of the experiment. In the Electronic Companion

(A.1) we show the results for each individual day, as well as the cumulative rates.
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calculated using the cumulative number of notifications and MAs at each day in the experiment.
Error bars show the 95% confidence interval (Wilson score interval), and points indicate the
center of the interval.

6 Discussion

We introduce the problem of connecting blood donors with demand centers in a time-dependent

setting, with uncertain demand. We formalize this as an online matching problem, with the pri-

orities of efficiency (maximizing the number of donations) and fairness (proportionality) for

recipients. We propose a class of stochastic policies for this setting, to which we compare a re-

alistic randomized baseline. In simulations we see a clear trade-off between the overall number

of donations and proportionality (Figure 4); the particular trade-off between these objectives de-

pends on the notification policy used. Policy Max (which maximizes edge weight/expected do-

nations) results in a 5-10% increase in the overall number of expected donations, compared to a

random baseline (Rand). However Max tends to favor certain recipients over others. In our sim-

ulations, Max completely ignores some recipients in 11 out of the 12 cities tested—presumably

because these recipients are associated with lower edge weights. On the other hand, Rand
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always sends a “fair” amount of notifications to each recipient, regardless of edge weight (ac-

cording to the definition of fairness and proportionality used in this study). To mediate between

the extremes of Rand and Max, we propose a class of stochastic policies (AdaptMatch); in

simulations these policies effectively control the balance between the overall expected number

of donations and proportionality across recipients, using parameter γ.

As a proof-of-concept we run an online experiment via the Facebook Blood Donation Tool,

comparing notification policies Rand and Max. We find that Max results in about 5% more

meaningful actions (a proxy for donations) than Rand. In relative terms this improvement

seems small, however the implications are quite meaningful. This experiment investigated one

small improvement to the notification strategy used by the Facebook Blood Donation Tool, i.e.,

whether the donor is notified about a nearby donation opportunity at random (Rand), or notified

about a particular opportunity selected by a predictive model (Max). Several other modifications

to the notification policy might yield similar improvements: for example by changing how often

each donor is notified, by more carefully planning for future donation needs, or by tailoring

notifications to each donor’s unique preferences and values.

The potential impact of this work is considerable. Indeed, if our observed results generalize

to the entire community of Facebook blood donors, then a 5% increase in donor action cor-

responds to at about 170, 00013 more donors taking meaningful action toward donation when

notified. Even if few of these meaningful actions lead to actual donation, the increase is still

substantial.

Before implementing these policies at a large scale in practice, it is important to understand

their potential impacts on both blood donors and recipients. In this study impact on donors is

minimal; the only difference between notification policies is which donation opportunity they

13Our results reported in Table 1 suggest that policy Max leads has a meaningful action rate of 3.9%, compared
to 3.7% for policy Rand. The difference is 0.2%—or 160, 000 of the estimated 85 million donors registered with
the Blood Donation Tool (https://socialimpact.facebook.com/health/blood-donations/).
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are notified about. However our simulation results indicate that blood recipients may face sig-

nificant impacts from changes in notification policy. For example policies that prioritize edges

with a high likelihood of meaningful action (e.g., policy Max) may ignore certain recipients—

such as rural hospitals or small donation centers with a limited web presence. This observation

is particularly troubling if low-weight recipients are already unlikely to recruit donors, which we

expect is the case. Of course, this potential injustice is exactly the motivation for our stochastic

policy AdaptMatch.

Blood donation is a global challenge, and has been the focus of many dedicated organi-

zations and researchers for decades. In this paper we investigate a new opportunity to recruit

and coordinate a massive network of blood donors and recipients, enabled by the widespread

use of social networks. We formalize a matching problem around matching blood donors with

recipients, and test these policies in both offline simulations and an online experiment using

the Facebook Blood Donation Tool. Our findings suggest that a matching paradigm can signif-

icantly increase the overall number of donations, though it remains a challenge to do so while

treating recipients equitably.
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Data and materials availability: The code used for all computational simulations in this

paper is available in the supplementary material, as well as on Github.14 Data related to the

Facebook blood donation tool cannot be released due to concerns for user privacy.

14Link removed during review. All code is included in the supplementary file code.zip.
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A Computational Simulations using Synthetic Data

Here we provide additional simulation results using publicly-available data. All code used in

this section is available online.15 We draw random donor and recipient locations from popula-

tion distributions from four large cities around the world: Jakarta (Indonesia), Istanbul (Turkey),

São Paulo (Brazil), and San Francisco (United States). All population distributions are gener-

ated using data from the Socioeconomic Data and Applications Center (SEDAC) ( (32)); dis-

tance between each donor and recipient is calculated using the Haversine approximation.

Edges: Edges are created for all donor-recipient pairs within 15km of each other. Edge

weights are generated according to random attributes assigned to donors and recipients: each

recipient is randomly assigned a “nominal” edge weight w0 ∼ U [0.01, 0.08], and each recipient

is randomly assigned a decay parameter k ∈ [5, 10, 20]. Edge weights are calculated using the

expression w0× exp(−D/k), where w0 is the recipient’s nominal edge weight, k is the donor’s

decay rate, and D is the distance between donor and recipient (in km). These parameters are

selected to roughly model the heterogeneity of real donation settings: some recipients are more

popular or have a greater online presence than others (thus, higher w0); some donors are more

willing to travel long distances than others (thus, higher k).

Recipient availability: Half of all recipients are randomly assigned to be static (always

available), while the other half are dynamic. Dynamic recipients have availability parameters

pvt generated as follows: we generate alternating sequences of low probability (pvt = 0.1) and

high probability (pvt = 0.9); each sequence has random Poisson-distributed length, with mean

4. These sequences are appended together to create pvt for all t ∈ T ; the first sequence is

randomly chosen to be low or high probability. For each matching scenario, we draw a single

realization of recipient availability using parameter pvt, and this realization remains fixed for

the remainder of the experiment.
15Link removed during review. All code is included in the supplementary file code.zip.
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Matching Simulation: We simulate an online donation scenario over 30 days, where each

donor is notified exactly once every 7 days; each donor receives their first notification on a

random day between the first and sixth day, so each donor is notified either 4 or 5 times in

each simulation. We calculate recipient normalization scores by running 100 trials of Rand;

normalization scores mv are the average weight matched with each recipient v over all trials.

Results: For each policy we calculate the total matched weight, and the fraction of the

maximum possible weight, matched by policy Max. To report proportionality we first calculate

the normalized weight for each recipient Yv/mv: the total weight matched with a recipient,

divided by their normalization score). For each policy we calculate a measure of proportionality

Gamma, defined as:

Gamma ≡ max{γ ∈ [0, 1] | γYv/mv ≤ Yv′/mv′∀v, v′ ∈ V }.

That is, Gamma is an empirical measure of proportionality for an allocation.

Figure 6 shows simulation results for all four cities, with matching using policies Max,

Rand, and AdaptMatch (with γ = 0.0, 0.1, 0.2, . . . , 1.0).

The top row of this figure shows the total weight matched by each policy, and the normal-

ized recipient outcomes; horizontal error bars show the range of normalized recipient outcomes.

A wider range corresponds to a less-proportional outcome, since some recipients receive much

greater normalized matched weight than others. For example in San Francisco, policy Max

matches some recipients with normalized weight of 4, while most other agents receive normal-

ized weight near 0.

The bottom row shows matched weight as a fraction of Max, and proportionality Gamma.

As expected, Max maximizes matched weight, though there is a wide range of recipient out-

comes: for both Istanbul and San Francisco, at least one recipient remains unmatched by Max

(and thus Gamma is zero).
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Figure 6: Simulation results for four cities, for matching policy Max (red circle), Rand
(blue “×”) and AdaptMatch with γ = 0.0, 0.1, . . . , 1.0 (green “+”). Top Row: The verti-
cal axis shows total matched weight for Max, and the average matched weight for Rand and
AdaptMatch; the horizontal axis shows the range of normalized recipient outcomes Yv/mv;
the plot markers show the median value of the range. Bottom Row: The vertical axis shows total
matched weight as a fraction of Max; the horizontal axis shows proportionality metricGamma.
Arrows on all plots indicate the γ values for AdaptMatch.
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On the other hand Rand by definition guarantees a proportional outcome, with Gamma =

1. This comes at a cost of matched weight: Rand matches between 60% and 80% of the weight

matched by Max.

Policy AdaptMatch mediates between these two extremes, varying the trade-off between

weight and proportionality with parameter γ.

Our two primary observations from these experiments are (1) while policy Max maximizes

matched weight, it clearly treats recipients unequally; in the worst case, some recipients are

never matched; (2) while policy Rand treats recipients equally, it results in a 20-30% reduction

in matched weight. Policy AdaptMatch moderates smoothly between Max and Rand, using

parameter γ; often, this policy yields a Pareto improvement over both extremes.

A.1 Real-World Online Experiments

Figure 7 shows 95% confidence intervals (Wilson score) for MA rate in the online experiment.

The top plot shows the aggregated MA rate, using the cumulative number of notifications and

MAs up to each day in the experiment. The bottom plot shows MA rates for each individual

day, using only notifications sent on each day.

B Proofs omitted from the main paper

This section contains proofs of all theorems and lemmas omitted in the main paper.

Proof of Theorem 1

Proof. This proof uses a reduction from k-EQUAL-SUM-SUBSET and PARTITION, each of

which are defined as follows:
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Figure 7: (Top) Aggregate MA rate for both Rand and Max, for each day in the experiment.
Rates are calculated using the cumulative number of notifications and MAs at each day in the
experiment. Error bars show the 95% confidence interval (Wilson score interval), and points
indicate the center of the interval. (Bottom) Daily MA rates, calculated using only the MAs and
notifications for each day.
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k-EQUAL-SUM-SUBSET: given a multiset S of positive integers x1, . . . , xN , determine

whether there are k non-empty disjoint subsets S1, . . . , SK ⊂ S such that the sum of integers

in each subset is equal. This problem is NP-complete for any k > 1, and strongly NP-complete

when k varies as a function of N and k = Ω(N) (33).

PARTITION: given a set S of positive integers x1, . . . , xN , determine whether there is a

partition of S into subsets S1, S2 ⊂ S, with S1 ∪ S2 = S, such that the sum of S1 and S2 are

equal. This problem is NP-complete, though efficient pseudo-polynomial time algorithms exist.

We consider two cases separately: γ = 1 and γ ∈ (0, 1):

• Case 1: γ = 1. reduction from k-EQUAL-SUM-SUBSET. Given an instance of k-

EQUAL-SUM-SUBSET we construct a blood donor matching scenario as follows: let

there be k recipients (one for each subset) and N donors (one for each integer xi). Each

donor i has edge weight xi to every recipient, thus G is a complete bipartite graph. Let

all recipients have the same normalization score mv = 1. In this case a non-empty

γ-proportional allocation awards the same matched weight to every recipient, since all

recipients have the same normalization score. If such an allocation exists, it can be used

to construct an equal-sum partitioning of integers xi, . . . , xN into k non-empty, disjoint

subsets as follows: let Mj be the set of donor indices matched with recipient j, and let

subsets S1, . . . , Sk be defined as Sj ≡ {xi′ | i′ ∈ {1, . . . , N}, i′ ∈ Mj}; thus, S1, . . . Sk

are non-empty disjoint equal-sum subsets of integers S.

• Case 2: γ ∈ (0, 1). reduction from PARTITION. Given an instance of PARTITION we

construct a blood donor matching scenario with N + 1 donors and 3 recipients. Donors

1 through N correspond to integers x1, . . . , xN , and recipients 1 and 2 correspond to

subsets S1 and S2; as before, all recipient normalization scores are mv = 1. All donors

1 through N are adjacent to both recipients 1 and 2, where all edges adjacent to donor i
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have edge weight xi. Donor N + 1 and recipient 3 are adjacent only to each other, with

edge weight
∑

i xi/(2γ). In this case, a non-empty γ-proportional allocation must match

recipient 3, resulting in normalized matched weight
∑

i xi/(2γ). Due to proportionality

constraints both recipients 1 and 2 must be matched with normalized matched weight at

least
∑

i xi/2; thus, both recipients must be matched with exactly edge weight
∑

i xi/2.

If such an allocation exists, it can be used to construct an equal sum partition: let M1 and

M2 be the indices of donors matched with recipients 1 and 2, respectively; let subsets S1

and S2 be defined as Sj ≡ {xi′ | i′ ∈ {1, . . . , N}, i ∈Mj}. By definition, both S1 and S2

are equal-sum subsets of integers S, and S1 ∪ S2 = S.

Proof of Lemma 1: EP = 0 for Max

Proof. We provide a simple example where Max is 0-proportional. Let there be one donor and

two recipients (A and B); the edge to recipient A has weight 0.9, while the edge to recipient

B has weight 1.0. Suppose there is only one time step. Rand matches recipient A and B with

equal probability, while Max never matches A. Thus for policy Max, E[YA] = 0 and mA > 0;

this means that there is no γ > 0 such that this outcome is γ-proportional.

Proof of Lemma 2: CR = 1 for Max, and with γ = 0, Max is equivalent to OPT(0)

Proof. First we show that the edges matched by Max are an optimal solution to Problem 1

without proportionality constraints, meaning that Max is an optimal solution OPT(0).

Proof by contradiction. Let xet be the decision variables representing edges matched by

Max (i.e., xet is 1 is e is matched at time t by Max, and 0 otherwise). Suppose that xet is not

an optimal solution to Problem 1. Note that without proportionality constraints, Problem 1 can

be decomposed by both donors u ∈ U and time steps t ∈ T . If xet is not an optimal solution,
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then there is a donor u ∈ U and time t ∈ T such that
∑

e∈Et
u:
xetwet which is not optimal, i.e.,

e is not a maximal-weight edge for donor u at time t. In this case, solution xet does not match

a maximal-weight edge from Et
u:, and thus xet was not produced by Max, a contradiction.

Proof of Lemma 3: CR = 1/N for Rand

Proof. Consider an example donation graph with N recipients and one donor; there is one edge

from the donor to each recipient, and one time step during which all edges are available. One

“high-weight” recipient has edge weight 1, while the remaining N − 1 “low-weight” recipients

have edge weight ε ' 0. Policy Max matches the high-weight recipient with total weight 1

(due to Lemma 2, while Rand matches all recipients with equal probability, with expected

weight 1/N + ε(N − 1)/N . As ε→ 0, the expected matched weight of Rand is 1/N , and thus

CR = 1/N .

Proof of Lemma 5: ZLP ≥ E[OPT(γ)]

Proof. Let (x∗et | p̂vt) denote the optimal solution of Problem 1 for demand realization p̂vt,

and let x∗et denote the expected value of (x∗et | p̂vt) over all demand realizations drawn from

distribution pet. Note that x∗et is a feasible solution to Problem 1-LP: by taking the expected

value of both sides of all constraints in Problem 1, we exactly recover Problem 1-LP (note that,

by definition,E[p̂vt] = pvt). Due to linearity of expectation, the expected objective of the offline

optimal solution (x∗et | p̂vt) is exactly equal to the objective of x∗et in Problem 1-LP—we denote

this expected objective by E[OPT(γ)]. In summary, the expected solution to Problem 1, x∗et, is

a feasible solution to Problem 1-LP and the expected objective value of Problem 1 is exactly

equal to the objective of x∗et in Problem 1-LP. Therefore, LP(γ) ≥ E[OPT(γ)].
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Proof of Lemma 6: the unconditional probability of matching e at twith for NAdapLP(α, γ)

is αx∗et

Proof. LetRt
v be the event that recipient v is available at time t, when using policy NAdapLP(α, γ).

Let X t
uv be the event that u is matched by NAdapLP(α, γ) using edge e = (u, v) at time t; note

that X t
uv and Rt

v are independent By conditioning on Rt
v, the probability of X t

uv as follows

X t
uv = P [X t

uv|Rt
v] = α

x∗et
pvt
pvt

= αx∗et

Proof of Lemma 7: NadapLP(1/D, γ) is always valid

Proof. Corollary 2 states that the weight matched by NAdapLP(α, γ) is proportional to the

optimal objective of Problem 3-LP, thus the competitive ratio of NAdapLP(α, γ) is α. It remains

to show that this policy is valid for α = 1/D.

Constraints in Problem 3-LP state that xet/pvt ≤ 1; therefore
∑

e∈Et
u:
x∗et/pvt ≤ |Et

u:| ≤ D

and 1
D

∑
e∈Et

u:
x∗et/pvt ≤ 1, meaning that this policy is valid for γ = 1/D.

Proof of Lemma 8: EP = γ and CR ≥ 1/D for NAdapOpt(γ)

Proof. First, since y∗et is a feasible solution for Problem 2, Policy NAdapOpt(γ) has expected

proportionality EP = γ due to constraints in Problem 2. Furthermore, if y∗et is an optimal solu-

tion, then the corresponding NAdapOpt(γ) policy has both EP = γ, and maximal competitive

ratio CR.

Since policy NAdapLP(1/D, γ) achieves competitive ratio CR = 1/D, it follows that

NAdapOpt Fixedtime achieves a competitive ratio at least 1/D. To further illustrate this,

consider the pre-match distribution used by policy NAdapLP(1/D): edge e is matched at time
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t with probability αx∗et/pvt, where x∗et is an optimal solution to Problem 1-LP. Note that yet ≡
1
D

x∗et
pvt

is a feasible solution to Problem 2 (condition
∑

e∈Et
u
yet ≤ 1 is met, due to constraints in

Problem 1-LP). Since this non-adaptive policy achieves CR = 1/D, an optimal non-adaptive

policy (corresponding to an optimal solution of Problem 2) achieves competitive ratio CR ≥

1/D.

C Rate-Limited Notification Policies

Rather than fixing the time steps when donors can be notified (“fixed time” policies), here

we consider policies which also determine when to notify donors, subject to a rate-limiting

constraint. As discussed in Section 4 it is necessary to limit the frequency that donors receive

notifications; here, we require that donors are notified at most once every K days. As in the

previous section, we first describe the offline-optimal policy for a known demand realization

p̂vt; this policy is identified using an optimal solution to Problem 3.

max
∑
t∈T

∑
e∈E

wetxet

s.t. xet ∈ {0, 1} ∀e ∈ E t ∈ T
aut ∈ {0, 1} ∀u ∈ U t ∈ T
sv ∈ R ∀v ∈ V
xet ≤ p̂vt ∀e = (u, v) ∈ E, t ∈ T
xet ≤ aut ∀e = (u, v) ∈ E, t ∈ T∑
e∈Eu:

xet ≤ aut ∀u ∈ U, t ∈ T

aut = 1−
t−1∑

t′=t−K+1

∑
e∈Et

u:

xet ∀u ∈ U, t ∈ T

sv = 1
mv

∑
t∈T

∑
e∈E:v

xetwet ∀v ∈ V

γsv ≤ sv′ ∀v, v′ ∈ V, v 6= v′.

(3)

This problem differs from the fixed-time setting (Problem 1) in that donor availability aut is

not pre-determined, rather it depends on past matching decisions: on time t, if donor u has been

matched in the prior K − 1 time steps, then aut = 1, and otherwise aut = 0; thus, aut ∈ {0, 1}

is an auxiliary variable defined using constraint aut = 1−
t−1∑

t′=t−K+1

∑
e∈Et

u:

xet. Using an optimal
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solution to Problem 3, offline optimal policy OPT(γ) and competitive ratio CR are defined

identically here as in the fixed-time setting.

Further, both baseline policies Rand and Max, as well as expected proportionality metric

EP are defined identically here as in the fixed-time setting; however, in the rate-limited setting

donors are available only if they have not been matched in any of the previousK−1 time steps.

As before, Rand is 1-proportional by definition, while Max is still 0-proportional in the worst

case (using the same example as in Lemma 1).

However, unlike in the fixed-time setting, Max does not always maximize competitive ratio.

This is intuitive: policies Rand and Max are myopic, in the sense that they ignore changes

in edge weights or donor availability over time. Instead they match donors as soon as they

are available (once every K days at most, if there is an available edge), which can lead to a

matching with arbitrarily low weight. Consider an example donation graph with one donor and

one recipient, with two time steps and K = 2 (the donor may be matched once). For t = 1 the

edge weight is ε ' 0, while for t = 2 the edge weight is 1. Since both Max and Rand both

match the donor on the first time step t = 1, the competitive ratio CR can be arbitrarily small.

Lemma 9. In the rate-limited setting, the competitive ratio for both Max and Rand is CR = ε,

where ε is the smallest edge weight in the graph.

As in the previous section, we investigate stochastic non-myopic policies. Mirroring our

analysis of the fixed-time setting, we first investigate non-adaptive policies, and we extend these

to develop approximate adaptive policies.

Non-Adaptive Rate-Limited Policies The policies in this section are analogous to the non-

adaptive fixed-time policies, but for a rate-limited setting. Surprisingly, the guarantees on com-

petitive ratio and expected proportionality for these policies are the identical to those in the

fixed-time setting.
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We begin with a policy based on the an LP relaxation or Problem 3, which refer to as

Problem 3-LP. As before, this relaxation is almost identical to Problem 3; the only difference

being that variables xet and aet are continuous on [0, 1] rather than binary. As before, this

problem yields a valid upper bound on the objective of Problem 3.

Lemma 10. Let ZLP denote the optimal objective of Problem 3-LP for matching problem P =

(U, V,E,mv, pvt, T ) and γ ∈ [0, 1]. Let E[OPT(γ)] be the expected objective of the offline-

optimal policy, over all demand realizations. Then, ZLP ≥ E[OPT(γ)].

The proof of this lemma is nearly identical to that of Lemma 5, and we omit it here.

The first non-adaptive policy for the rate-limited setting is based on an optimal solution to

Problem 3-LP, and is analagous to NadapLP from the previous section:

Definition 10 (NAdapLP Rate(α, γ)). Let x∗et denote an optimal solution to Problem 3-LP,

with proportionality parameter γ. For each time step t ∈ T and each donor u ∈ U , edge

e ∈ Eu: is pre-matched with probability αx∗et/βutpvt, and the donor is not pre-matched with

probability 1−α
∑

e=(u,v)∈Eu:

x∗et
βutpvt

. Each parameter βut is equal to the probability that donor

u is available at time t under this policy; these parameters are estimated via simulation.16 At

each time step, all donors with a pre-matched edge for the time step are matched—if both the

donor and recipient are available.

Somewhat surprisingly, each of the important properties of NAdapLP also apply to NAdapLP Rate;

the proofs are nearly equivalent to the corresponding proofs in the fixed-time setting, and we

omit them here.

Lemma 11. Let x∗et be the optimal solution used in policy NAdapLP Rate(α, γ). The uncon-

ditional probability that edge e is matched at time t by policy NAdapLP Rate is αx∗et.
16Please see (24) for a discussion of this method, which inspired this policy.
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Corollary 4. NAdapLP Rate(α, γ) achieves competitive ratio CR = α.

Corollary 5. NAdapLP Rate(α, γ) is always γ-proportional in expectation.

As in the fixed-time setting, policy NAdapL Rate(α, γ) can only be implemented if α is

small enough that the policy is valid.

Lemma 12. Policy NAdapLP Rate(1/(2D), γ) is always valid and achieves a competitive

ratio of CR ≥ 1/(2D) for all γ ∈ [0, 1], where D is the maximum degree of any donor:

D ≡ maxu∈U |Eu:|.

Proof. First we observe that NAdapLP Rate(α, γ) is valid if α ≤ βut/D, where D. Next, we

show that βut ≥ 1/2 for policy NAdapLP Rate(1/(2D), γ); thus we set α ← 1/(2D) for the

remainder of this proof. To demonstrate this, we assume that all donors are available at the first

time step (βu1 = 1), and thus βu1 ≥ 1/2. For all other time steps, βut is expressible as

βut ≡ 1−
t−1∑

t′=t−K+1

Put

where Xet is the probability that u is matched at time t. Thus, we can express βut in terms of

the decision variables x∗et used to define policy NAdapLP Rate(α, γ):

βut = 1−
t−1∑

t′=t−K+1

∑
e∈E:u

αx∗et

≥ 1− α

D

= 1/2

Thus, for α = 1/(2D), βut ≥ 1/2, and α ≤ βut/D. Therefore policy NAdapLP Rate(1/(2D))

is always valid; due to Corollary 4 this policy achieves competitive ratio CR = 1/(2D).
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