OK Google: Who gets the kidney?

Duncan McElfresh, MS, PhD student

Gabriel Schnickel, MD, MPH John Dickerson, PhD Patricia Mayer, MD, MS

ASBH October 18, 2018

Duncan McElfresh, MS PhD student, University of Maryland Department of Computer Science

Gabriel Schnickel, MD, MPH Associate Professor of Surgery, UCSD School of Medicine Division of Transplant and Hepatobiliary Surgery

John Dickerson, PhD Assistant Professor, University of Maryland Department of Computer Science

Patricia Mayer, MD, MS Palliative Medicine and Clinical Ethics Banner Health, Phoenix AZ

No financial disclosures

On two occasions I have been asked, "Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?" ... I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a Question.

Charles Babbage (1864)

Garbage in, Garbage out.

<u>Outline</u>

Part I: Kidney Transplantation & Exchange

- History of kidney allocation policy
- Intro to kidney exchange

Part II: Artificial Intelligence & Medicine

- Intro to AI
- Al in medicine
- Al in kidney exchange

Part III: AI & Ethics / Building a Better Algorithm

- Challenges of integrating AI & Ethics
- A way forward?

Part I

Kidney Transplantation & Exchange

History: Kidney Transplantation, deceased donors

- Early 60's: kidneys used locally; policies decided by local transplant center
- 1968: Southeast Organ Procurement Foundation (SEOPF) formed to share kidneys in southeast US
- 1977 First computer-based organ matching system (UNOS)
- 1984 UNOS separates from SEOPF
- 1984 Congress passes NOTA and establishes OPTN
- 1986 Federal contract to operate OPTN awarded to UNOS
- 1999 UNOS launches UNET, secure internet-based database system to manage organ allocation

More history

• 2000 OPTN Final Rule - "Equitable allocation of deceased donor organs"

- Use sound medical judgment
- Achieve best use of donated organs
- Avoid wasting organs
- Avoid futile transplants
- Promote patient access to transplantation
- 2004 OPTN Kidney Transplant Committee
 - Charged with developing a "new rule" based on above criteria
 - Most allocation was based on waiting time
- 2014 New allocation system implemented
 - Yes, it took a decade

Exchanges: Kidney Paired Donations (KPD)

- 2001: First KPD program in US (Hopkins)
- 2009: Hopkins first 16 patient multicenter Domino Chain
- 2010: UNOS begins "pilot" kidney exchange program
 - Using AI-based algorithm to match patients with donors
- 2014: National Kidney Registry sets new record with 70 participant chain

- National exchanges: South Korea ('91), Netherlands ('05), Canada ('09),
- There are MANY exchanges in the US, and they don't all work together
 UNOS, NKR, APD, NCDEC, Private hospitals (ex Johns Hopkins)

Kidney Donation in the US

Patients in Need of an Organ

Images: https://optn.transplant.hrsa.gov/

10

Part II

Artificial Intelligence & Medicine

What is Artificial Intelligence?

In popular culture:

Al is whatever hasn't been done yet. (the "Al effect")

For us:

Al is an algorithmic system that makes decisions or takes actions on behalf of a human.

What is Artificial Intelligence?

Planning & Optimization

🖾 😧 M 🕲	γ α₹	🔊 🔞 11:18
from Your loo		
to Portland S	teakhouse and Share direction	ns
AGAN	Share direction	
DEVARA JEEVANAHALLI	All traffic	
BENSON TOWN	Satellite	
AHAL PULIKESH	Terrain	
BAR SINDHI COLO	NY	HA
SHIVAJI NAGAR	ISARVAGNANAG	SAR
SIVANCHETT GARDENS	ULSOOR	
CI VIA	YOUT	ANACAR
IUIIU Portla	afe	IA NAOAN
RICHMOND		
Google NEELASANDRA		Get a
LONY (7.1. Lucy)		
20 min (7.1 km)		÷
via Hennur Main Rd		A
		B
		····•
		•

Natural Language Processing

new	
New York	
New York	
New Orleans	
Newark	
Newport Beach	

Recommender Systems

Also Artificial Intelligence...

Artificial General Intelligence &

Machine Consciousness

- Decision support tools
- Automatic Alerts
- Machine Learning

- Decision support tools
- Automatic Alerts
- Machine Learning

Sepsis Alert Algorithm

- If: Suspected Infection and 2 or more of:
 - Temp >38 or <36
 - Heart rate >90
 - Resp. rate >20
 - Sa02 <93% on RA without chronic lung disease
 - Glucose >8 mmol/L without diabetes
 - Confusion/unresponsiveness

Then: Issue Sepsis Alert

Discern: Open Chart - UCTEST, CHARGEPAT						
	SEPSIS ALERT					
	This patient has been identified at risk for SEPSIS.					
	The following criteria were met: Temperature Oral : 40 as of July 01, 2012 11:45:00 EDTNursing Respiratory Rate : 40 as of July 01, 2012 11:45:00 EDT Suspected Infection:					
	Acknowledge	<				

- Decision support tools
- Automatic Alerts
- Machine Learning

Clinically applicable deep learning for diagnosis and referral in retinal disease

ARTICLES

ttps://doi.org/10.1038/s41591-018-0107-6

Jeffray De Fauwi, Joseph R. Ledsami, Bernardino Romera-Paredes', Stanlslav Nikolovi, Nenad Tomasevi, Sam Blackwelli, Harry Askhami, Xavier Gloroti, Brendan O'Donogbue, Daniel Visentin', George van den Driessche', Balaij Lakhminarayanan', Clemens Meyer', Faith Mackinder', Simon Bouton', Kareem Ayoub', Reena Choprae¹, Dominic King', Alan Karthikesailignen, Clan O. Hugbese', Rosalind Raitav, Julian Hughese, Down A. Sim', Catherine Egan', Adnan Tufali', Hugh Montgomery[®], Demis Hassabis', Geraint Reese⁹, Trevor Back', Pang T. Khaw², Mustafa Suleyman', Julien Cornebise^{1,4}, Pearse A. Keane^{9,24+} and Olaf Ronneberger^{® 14+}

Medical Imaging Data

medicine

Machine learning model

Diagnosis

• Algorithms (and AI) are common in medicine

- Usually easy to interpret:
 - Decision support
 - Automatic alerts
 - Diagnosis prediction

• What about kidney exchange?

<u>Kidney Transplant (Without Exchange)</u>

Kidney Transplants (Without Exchange) d р d d р р d d d р р р d d р р

Kidney Transplants (Without Exchange)

Without Exchange

Roughly 50% of patients can receive a kidney from their donor.

(The rest are incompatible.)

D

d

p

Paired Kidney Exchange

Two pairs exchange donors.

Roughly 75% of patients can find a donor (from 50%).

Every pair in a cycle donates to the next pair, and so on

d

Every pair in a cycle donates to the next pair, and so on

d

Every pair in a cycle donates to the next pair, and so on

d

Every pair in a cycle donates to the next pair, and so on

Every pair in a cycle donates to the next pair, and so on

Implications

In real exchange pools, long cycles can reach far more patients...

But long cycles have a far higher risk of breaking.

To reduce risk, cycles are often carried out simultaneously, and limited to 2 or 3 transplants.

Kidney Exchanges: Chains

NDDs can increase overall number of transplants (by 5-6%) by donating to an *exchange* rather than the *waiting list*.

DPD:

- Often simultaneous
- In practice, limited to 3-4 transplants

NEAD:

- First reported chain had 10 transplants over 8 months
- Unlimited length (in theory)

Domino Paired Donation (DPD)

Non-simultaneous extended altruistic donor (NEAD)

The Kidney Exchange Problem

Q: How do we decide which cycles & chains to use?

The Kidney Exchange Problem

Q: How do we decide which cycles & chains to use?

A: Algorithms

- 1) Exchanges set a *matching policy*.
- 2) Computer scientists design an algorithm to implement the policy.

33

The Kidney Exchange Problem

Q: How do we decide which cycles & chains to use?

A: Algorithms

General Policy Principles

Efficiency / Utilitarianism	Donor kidneys should do the most good for the most patients.	
Prioritarianism	Some patients should be prioritized over others.	
Egalitarianism	All participants should have equal access to donor kidneys.	

Policy Examples & Corresponding Principles

Utilitarian Policy:

- Maximize total number of transplants
- Maximize expected life years

Prioritarian Policy:

- Transplant younger patients before older patients
- Transplant sick patients before healthy patients

Egalitarian Policy:

- Lottery (randomly select patients to receive transplants)
- First-come first-served

UNOS Matching Policy:

- 1) Assign a *score* to each transplant
- 2) Select the cycles & chains to *maximize total score*

This is...

- Computationally hard (NP-hard)
- Practically impossible without an algorithm

100 "base points" + ...

Table 13-2: OPTN KPD Prioritization Points					
If the:	Then the match will receive:				
Candidate is a 0-ABDR mismatch with the potential donor	200 points				
Candidate has a CPRA greater than or equal to 80%	125 points				
Candidate is a prior living organ donor	150 points				
Candidate was less than 18 years old at the time the candidate was registered in the OPTN KPD program	100 points				
Candidate and potential donor are registered for the OPTN KPD program in the same region	25 points				
Candidate and potential donor are registered for the OPTN KPD program in the same DSA	25 points				
Transplant hospital that registered both the candidate and potential donor in the OPTN KPD program is the same	25 points				
Potential donor has at least one of the other antibody specificities reported for the candidate	- 5 points				

100 "base points" + ...

Egalitarianism

Table 13-2: OPTN KI			
lf the:	Then the match will receive:		
Candidate is a 0-ABDR mismatch with the potential donor	200 points	🗕 Utilitarianism	
Candidate has a CPRA greater than or equal to 80%	125 points		
Candidate is a prior living organ donor	150 points	– Prioritarianism	
Candidate was less than 18 years old at the time the candidate was registered in the OPTN KPD program	100 points		
Candidate and potential donor are registered for the OPTN KPD program in the same region	25 points		
Candidate and potential donor are registered for the OPTN KPD program in the same DSA	25 points		
Transplant hospital that registered both the candidate and potential donor in the OPTN KPD program is the same	25 points	→ Utilitarianism(?)	
Potential donor has at least one of the other antibody specificities reported for the candidate	- 5 points		

Egalitarian, Prioritarian, or Utilitarian?

Q: Does maximizing priority points maximize the overall number of transplants?

Egalitarian, Prioritarian, or Utilitarian?

Q: Does maximizing priority points maximize the **overall number of transplants**?

A: Not necessarily!

Egalitarian, Prioritarian, or Utilitarian?

Q: If patient X has a higher score than patient Y, will X receive a kidney before Y?

Egalitarian, Prioritarian, or Utilitarian?

Q: If patient X has a higher score than patient Y, will X receive a kidney before Y?

A: Not necessarily!

UNOS Policy - Ethical Implications

100 points

UNOS awards points based on the following criteria (plus 100 "base points"):

- Exact HLA match 200 points
- Highly sensitized 125 points
- Prior organ donor 150 points
- Age < 18
- Geographic proximity 25-75 points

UNOS Policy - Ethical Implications

200 points

125 points

150 points

100 points

UNOS awards points based on the following criteria (plus 100 "base points"):

- Exact HLA match
- Highly sensitized
- Prior organ donor
- Age < 18
- Geographic proximity 25-75 points

Consider two patients:

- A) 16 y/o patient awaiting his second kidney, highly sensitized due to prior non-compliance with failure of original graft (100 + 100 + 125 = 325 points)
- B) 30 y/o non-sensitized prior organ donor. (100 + 150 = 250 points)

Patient A is prioritized over Patient B

Questions:

Is it fair to maximize priority points?

When, if ever, should we carry out *fewer* than the maximum possible number of transplants?

Can priority points reflect principles of...

- Utilitarianism?
- Prioritarianism?
- Egalitarianism?

View from the Operating Room

Real people, real stories from the transplant world

- When do I hold out for a better kidney?
- What about gaming the system?
- What risks do I accept?

Part III

AI & Ethics / Building a Better Algorithm

AI & Ethics: Questions

What are the moral implications of an algorithm's design and use? How should competing implications/principles be resolved?

Designing a Better Algorithm

(1) Stakeholders

define moral theories define morally-relevant features

(3) Stakeholders

select a design option, or
refine moral theories & return to (1)

(2) Technicians

- create design options
- characterize morally-relevant features

Conclusions

- AI & algorithms are prevalent in medicine
- These algorithms often have ethical implications
- One example: kidney exchange
 - *relies* on AI to match patients and donors
 - unintended consequences
- We can do better
 - Iterative, collaborative process with both technical and ethical experts

Thank you for your attention

Duncan McElfresh: dmcelfre@math.umd.edu

Gabriel Schnickel: John Dickerson: Patricia Mayer: gschnickel@uscd.edu john@cs.umd.edu patricia.mayer@bannerhealth.com

