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ABSTRACT

We consider the cycle packing problems motivated by kidney exchange. In kidney exchange, patients
with willing but incompatible donors enter into an organized market and trade donors in cyclic structures.
Exchange programs attempt to match patients and donors utilizing the quality of matches. Current methods
use a point estimate for the utility of a potential match that is drawn from an unknown distribution over
possible true qualities. We apply the conditional value-at-risk paradigm to the size-constrained cycle and
chain packing problem. We derive sample average approximation and distributionally-robust-optimization
approaches to maximize the true quality of matched organs in the face of uncertainty over the quality of
potential matches. We test our approach on the realistic kidney exchange data and show they outperform the
state-of-the-art approaches. In the experiments, we use randomly generated exchange graphs resembling
the structure of real exchanges, using anonymized data from the United Network for Organ Sharing.

1 INTRODUCTION

Cycle packing is a fundamental problem in algorithmic graph theory, with classical results dating to at
least 1959 (ErdHos and Gallai 1959; Lovász 1968). Many variants of the cycle packing problem exist—on
directed and undirected graphs, with and without edge weights, and with and without minimum or maximum
cycle lengths—and many variants are NP- and even APX-hard (Pyber 1996). Cycle packing problems
arise in many real-world settings, including scheduling, transportation, healthcare, and finance. In these
settings, models parameters—vertices, edges, weights—are uncertain but can be estimated from data, at
some cost. The interplay between this estimation and the final combinatorial optimization provides a rich,
and important role for modern data-driven decision-making.

In this paper, we are motivated by the application of cycle packing to a specific problem with societal
impact at the intersection of machine learning (ML), healthcare, and economics: kidney exchange (Rapaport
1986; Roth, Sönmez, and Ünver 2004). A kidney exchange is an organized barter marketplace where patients
with end-stage renal disease trade willing donors in cyclic or chain-like transactions. Exchanges are facilitated
by a centralized clearinghouse, which aims to find the “best” disjoint set of such swaps—i.e., to solve a
cycle and chain packing problem. While relatively new, kidney exchange already accounts for over 12%
of living kidney donations in the US, and is growing worldwide (Biró, Burnapp, Haase, Hemke, Johnson,
van de Klundert, and Manlove 2017)—including via extensions to liver and lung (Ergin, Sönmez, and
Unver 2017), and even multi-organ (Dickerson and Sandholm 2017), exchange. Furthermore, the AI/ML
and operations research communities play a central role in fielding these exchanges (Abraham, Blum, and
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Sandholm 2007; Manlove and O’Malley 2015; Dickerson, Manlove, Plaut, Sandholm, and Trimble 2016;
Li, Lieberman, Macke, Carrillo, Ho, Wellen, and Das 2019).

Potential transplants vary in quality. A donor’s kidney quality and the medical similarity to the patient
both impact expected graft survival (Massie, Leanza, Fahmy, Chow, Desai, Luo, King, Bowring, and Segev
2016). Similarly, policymakers express value judgments that quantitatively prefer traits (e.g., pediatric
patients) to varying degrees (Freedman, Borg, Sinnott-Armstrong, Dickerson, and Conitzer 2020). Neither
the true medical quality of a transplant nor the “true” reflection of policymakers’ value judgments is known.
In practice, instead of distributional information, simple point estimates are used (UNOS 2015). This leads
to brittle solutions that may be far from optimal when true quality is realized post-transplant.

Our contributions. We consider edge weight uncertainty over the quality of the individual match
(henceforth, weight uncertainty) in the general cycle packing setting. We integrate risk assessment into the
cardinality-constrained cycle packing model. The proposed mean-risk model considers both the expected
edge weight value of the solution—the focus of classical models (Chen, Tanahashi, and Wang 2008) as well
as state-of-the-art kidney-exchange-specific models (Dickerson, Manlove, Plaut, Sandholm, and Trimble
2016)—and the expected lowest α% total weight. Our model reduces the number of cases with extremely
low realized edge weights while improving average performance over standard baselines.

We propose two data-driven methods for solving the kidney exchange problem under the mean-risk
model. The first approach is based on the sample average approximation (SAA), which directly uses an
empirical distribution. The second approach considers the mismatch between the empirical distribution and
the true distribution by drawing on the distributionally robust optimization (DRO) literature (Esfahani and
Kuhn 2018). The DRO approach is especially useful for realistic scenarios in which the sample data are
not representative of the true underlying distribution. DRO-based methods aim to find an optimal robust
solution, which achieves the highest matching score under all possible deviations between the empirical
distribution and the true distribution. For both approaches, we propose tractable mixed-integer linear/conic
programs that can be efficiently solved by standard solvers.

In the experiments, we show on realistic data that both models improve worst-case performance when
compared to standard baselines. For these experiments we use 32 randomly-generated exchange graphs
resembling the structure of real exchanges, using anonymized data from the United Network for Organ
Sharing (UNOS) US-wide kidney exchange and to reflect edge weight uncertainty, we define an edge
weight distribution inspired by real sources of uncertainty, described in the next section.

2 PRELIMINARY

We begin by briefly overviewing the standard model for kidney exchange; we then give a brief background
on risk assessment, sample average approximation, and distributionally robust optimization.

2.1 Kidney Exchange

Kidney exchanges are often modeled as a directed graph G = (V,E), where vertices v ∈V represent both
patient-donor pairs P and non-directed donors N′ who enter the exchange without a paired patient (i.e.,
V = P∪N′) (Roth, Sönmez, and Ünver 2004; Roth, Sönmez, et al. 2005; Abraham, Blum, and Sandholm
2007). Directed edges e ∈ E represent potential transplants from the donor of one vertex to the patient of
another. Each edge e ∈ E has a weight we which is set by the exchange (often by written policy); weights
typically reflect some combination of the medical and moral utility of a transplant. Matches take place
in two types of structures: cycles and chains. A cycle in a kidney exchange represents a potential cyclic
trade between patient-donor pairs in P, where the donor at one pair gives her kidney to the patient at the
subsequent pair. A chain in a kidney exchange begins when a non-directed donor in N′ donates his kidney
to the patient of a pair in P, whose paired donor donates her kidney to another patient-donor pair, and so
on until a logistical problem arises and the chain concludes.
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The kidney exchange clearing problem is to select a feasible set of cycles and chains in G that maximize
overall edge weight. Cycles and chains must be vertex disjoint because no donor can give more than one
kidney. Additionally, cycles are typically limited in length to 3 or 4 due to logistical constraints (UNOS
2015). We denote by M the set of all feasible matchings (i.e., cycle and chain packings) in G. The most
general formulation of the clearing problem is argmaxx∈M x ·w, where binary decision variables x
represent edges, or cycles and chains. This problem is both NP- and APX-hard (Abraham, Blum, and
Sandholm 2007; Biró, Manlove, and Rizzi 2009), and is equivalent to the traditional (weighted) cycle
packing problem where cycles may have some length constraint. Note that we can treat chains as cycles
with a zero-weight edge connecting the final patient-donor pair in the chain to the initiating non-directed
donor.

Uncertainty in kidney exchange. There are several sources of edge weight uncertainty in kidney
exchange. We now discuss one primary cause of uncertainty. It is common to choose edge weights that
are reflective of the survival time of the transplanted organ (Massie, Leanza, Fahmy, Chow, Desai, Luo,
King, Bowring, and Segev 2016; UNOS 2015). This is the approach taken by (Li, Lieberman, Macke,
Carrillo, Ho, Wellen, and Das 2019), who use the Living Donor Kidney Profile Index (LKDPI)—a score
based on the estimated survival time of a transplanted kidney in the donor. These scores are estimated
from past transplants (e.g., using Cox survival analysis), and are thus inherently uncertain. For a real
LKDPI calculator, we refer readers to (LKDPI-Calculator 2015). In line with the assumptions of the
LDKPI, we assume that each edge weight is drawn from an exponential distribution that depends on patient
and donor characteristics. We use this distributional assumption to define an edge weight distribution for
our experiments in Section 4. Past work has addressed a complementary form of uncertainty over the
existence of an edge, rather than the quality of the edge. Approaches to that problem variously use stochastic
programming (Dickerson, Procaccia, and Sandholm 2019; Anderson, Ashlagi, Gamarnik, and Roth 2015) as
well as a (non-distributionally-)robust optimization (Carvalho, Klimentova, Glorie, Viana, and Constantino
2020; McElfresh, Bidkhori, and Dickerson 2019) and, most recently, mixed-integer optimization (Zheng,
Shen, and Shi 2015; Bidkhori, Dickerson, McElfresh, and Ren 2020).

2.2 Risk Measures & Assessment

In this paper, we incorporate Conditional Value-at-Risk, also known as expected shortfall, into the cardinality-
constrained cycle and chain packing problem, with application to organ exchange. CVaR is one of the
most common risk measures with applications in support vector machines (SVM), reinforcement learning,
financial management, and many other areas. In addition, optimizing CVaR is often mathematically tractable
(Rockafellar, Uryasev, et al. 2000). We propose two complementary approaches to solving our model: one
based on the sample average approximation, and the other on distributionally robust optimization.

Stochastic programming via SAA. Our first approach uses sample average approximation (SAA),
which was first studied by (Shapiro and Homem-de Mello 1998) and (Kleywegt, Shapiro, and Homem-de
Mello 2002). SAA approximates the unknown distribution through empirical distributions. If the data
samples are drawn from the true unknown distribution, the optimal solution of SAA converges to the true
optimal with probability 1; however, if only a small number of samples are available, the performance of
the obtained solution is often poor.

Distributionally robust optimization. Our second approach relies on distributionally robust optimiza-
tion (DRO), a modeling paradigm for optimization under uncertainty. DRO offers computational scalability
and promising out-of-sample performance even with limited data, which bridges the gap between robust
optimization (Bertsimas and Sim 2004) and stochastic optimization (Shapiro, Dentcheva, and Ruszczyński
2009). This approach begins by defining an ambiguity set P to contain possible distributions of the
uncertain optimization parameters. Consider the example of edge weight uncertainty: we might design an
edge weight ambiguity set P that contains the possible edge weight distributions P with high probability.

Then, the DRO optimization problem optimizes the solution quality for the worst-case distribution inside
the ambiguity set P . For kidney exchange (a maximization problem), this corresponds to a minimization
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over P; for example, suppose that edge weights w in a kidney exchange graph are random, with distribution
contained in ambiguity set P; Problem 1 is the DRO formulation for kidney exchange in this setting:

max
x∈X

min
P∈P

x ·w. (1)

The ambiguity set P plays an important role in DRO (Delage and Ye 2010; Bertsimas, Gupta, and
Kallus 2018). In this paper, we draw on intuition from the Wasserstein metric when defining our ambiguity
set (Esfahani and Kuhn 2018), discussed in greater depth in the next section.

3 MEAN-RISK KIDNEY EXCHANGE MODEL

Our kidney exchange model balances the expected outcome with a worst-case outcome, using a conditional
value-at-risk (CVaR) approach, which we describe in detail later in this section. In contrast, most kidney
exchange models focus on the expected matching weight (e.g., (Dickerson, Procaccia, and Sandholm 2019;
Klimentova, Pedroso, and Viana 2016; Anderson, Ashlagi, Gamarnik, and Roth 2015)) or the worst-case
outcome (e.g., (McElfresh, Bidkhori, and Dickerson 2019; Carvalho, Klimentova, Glorie, Viana, and
Constantino 2020)). To our knowledge, the only prior work that considers a CVaR model of kidney
exchange are due to Zheng et al. (Zheng, Shen, and Shi 2015), which does not limit the cycle or chain
length (and for this reason, they can use a min-cost flow approach), and Bidkhori et al. (Bidkhori, Dickerson,
McElfresh, and Ren 2020), which does not consider uncertainty in edge weights.

To account for edge weight uncertainty, we propose the following objective function for kidney exchange:

µ + γ×µα .

At a high level, µ represents the expected edge weight, while µα represents α% worst-case mean.
Compared to the standard model, the second term is new and measures the variance over different match
weights. The positive parameter γ controls the trade-off between the average performance and the risk of
the solution. It is predetermined by the users and represents the desirable conservative. The larger the
gamma is, the more conservative the optimal solution is.

Notation. We use G to denote a kidney exchange graph, consisting of edges e ∈ E and vertices
v ∈ V = P∪N′, including patient-donor pairs P and non-directed donors (NDDs) N′. The set of cycles
on exchange graph G is denoted as C. We use L to denote the chain cap (maximum number of edges in
a chain); we and wc denote the edge and cycle weights for each edge e ∈ E and cycle c ∈C (defined as
wc = ∑e∈c we), respectively. δ−(i) represents the set of edges into vertex i, and δ+(i) represents the set of
edges out of vertex i. Note that edges between an NDD n ∈ N′ and a patient-donor vertex d ∈ P may only
take position 1 in a chain, while edges between two patient-donor pairs may take any position 2, · · · ,L in a
chain. For convenience, we define the function K for each edge: K (e) is the set of all possible positions
edge e may take in a chain.

K (e) =

{
{1}, e begins in n ∈ N′,
{2, · · · ,L}, e begins in d ∈ P.

Chains always begin with an NDD, followed by one or more patient-donor pairs. Since NDDs only appear
at the start of a chain, K (e) = {1} for all edges from NDDs; all other edges can appear at or after the
2nd position in a chain. Our model primarily uses the following decision variables:

• zc ∈ {0,1}: 1 if cycle c is used in the matching, and 0 otherwise.
• yek ∈ {0,1}: 1 if edge e is used at position k in a chain, and 0 otherwise.

Given an instance of the kidney exchange problem G = (V,E), we define W as an |E|-dimensional vector,
where

We =− ∑
k∈K (e)

yek−∑
c∈C

1(e ∈ c)zc,∀e ∈ E,
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indicating if edge e is used (−1) or not (0) in a final matching. Recall from §2.2 that w represents the
random edge weights. So, 〈w,W〉 is the “loss” (negative weight) of the matching. While it is common in
the literature to represent kidney exchange as a maximization problem (with a non-negative objective), we
instead use a minimization problem (with non-positive objective) to be consistent with the convention of
risk-minimization. The average of the α% worst (highest) losses is known as the conditional value-at-risk
(CVaR) (Rockafellar, Uryasev, et al. 2000) at level α . Therefore, we formulate the model as

min EP(〈w,W〉)+ γCVaRα(〈w,W〉)
s.t. {y,z} ∈X ,

(2)

where P is the distribution corresponds to edge weights and X denotes the set of constraints from the
PICEF model; these constraints ensure that decision variables y and z correspond to a feasible matching,

X ≡



∑
e∈δ−(i)

∑
k∈K (e)

yek + ∑
c∈C:i∈c

zc 6 1, i ∈ P;

∑
e∈δ−(i)∧k∈K (e)

yek > ∑
e∈δ+(i)

ye,k+1, i ∈ P,k ∈ {1, · · · ,L−1};

∑
e∈δ+(i)

ye1 6 1, i ∈ N′;

yek ∈ {0,1},e ∈ E,k ∈K (e),zc ∈ {0,1},c ∈C.

The objective function minimizes a weighted sum of the mean and CVaRα of the loss of a matching,
where α ∈ (0,100] is the confidence level of CVaRα . The parameter γ > 0 is set by the user, and defines the
trade-off between the mean and CVaRα : γ = 0 means that this model only optimizes the expected matching
weight, and γ > 0 includes the CVaR objective. We reformulate CVaRα by introducing an auxiliary variable
d, as in (Rockafellar, Uryasev, et al. 2000). Thus, (2) is equivalent to

min
y,z,d

EP(〈w,W〉)+ γ

{
d +

1
α
EP
[
(〈w,W〉−d)+

]}
s.t. {y,z} ∈X .

(3)

In the following, we propose two approaches to solve (3) based on different data environments, which are
sample average approximation (§3.1) and distributionally robust optimization (§3.2).

3.1 Solve Mean-Risk Model (3) with SAA

In this section, we assume the available edge weight measurements are representative of the true edge
weight distribution. Our approach then uses these measurements to approximately solve Problem (3). If
there is sufficient data to accurately characterize the edge weight distribution, we might instead try to solve
Problem (3) exactly. However, even in this case, Problem (3) is not analytically solvable. We propose an
SAA-based approach to approximately solve (3). The main results are summarized in Proposition 1. Suppose
N measurements of each edge’s weight are available or generated from the edge weight distribution; we
denote the n-th measurement as ŵn, 1 6 n 6 N. Problem (4) can be solved efficiently using general-purpose
solvers like CPLEX.
Proposition 1 The SAA of (3) is equivalent to the following mixed-integer program.

min
y,z,d

1
N

N

∑
n=1

Πn + γd

s.t. We =− ∑
k∈K (e)

yek−∑
c∈C

1(e ∈ c)zc,∀e,

Πn > 〈ŵn,W〉,∀n,

Πn > (1+
γ

α
)〈ŵn,W〉−

dγ

α
, ∀n,{y,z} ∈X .

(4)
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3.2 Solve Mean-Risk Model (3) with DRO

In this section, we consider a setting where the available data are highly noisy and not representative of
the true distribution. In this section, we refer to two different distributions: the empirical distribution (the
distribution of the N initial weight measurements), and the realized distribution (the “true” underlying
distribution). The empirical distribution is often estimated statistically and suffers from possible errors. For
example, finite data size, existence of outliers, and dynamic patient and donor pools all lead to errors in the
empirical distribution. Therefore, the mismatch between the empirical distribution and the true distribution
may deteriorate the performance of the proposed model. To solve this problem, we propose a model
based on distributionally robust optimization (DRO) to hedge against the possible errors in the empirical
distribution. In the DRO approach, we assume that the true edge weight distribution P is contained in an
ambiguity set P , which is formulated as:

min
y,z,d

max
P∈P

EP

{
max

[
〈ŵn,W〉,(1+

γ

α
)〈ŵn,W〉−

dγ

α

]}
+ γd

s.t. {y,z} ∈X .

(5)

Ambiguity Set Based on Wasserstein Metric. Recently, the Wasserstein metric has achieved success
in various applications. We construct the ambiguity set using a Wasserstein ball centered at the empirical
distribution, which captures all the “similar” distributions; their similarities can be adjusted through the
radius of the ball. Next we formalize this model, beginning with the definition of ambiguity set P .
Suppose w ∈ R|E|>0, Ξ ⊆ R|E|>0, and M(Ξ) contains all the probability distributions Q supported on Ξ with∫

Ξ
‖w‖Q(dw) < ∞. ‖ · ‖ represents an arbitrary p-norm. Let P̂ be the empirical distribution of the edge

weight w and θ > 0. Ambiguity set P is defined as: P =Bθ (P̂) = {P∈M(Ξ) : W (P, P̂)6 θ}. We define

W (P, P̂) := inf
{∫

Ξ2
‖w−w′‖Π(dw,dw′)

}
, where Π is a joint distribution of w and w′ with marginals P

and P̂. Using this definition of P , Proposition 2 shows that (5) has a closed-form reformulation, which
is a mixed-integer program if ‖‖∗ is ‖‖1 or ‖‖∞, and a mixed-integer conic program for other p-norms.
Thus, it can be solved using solvers like CPLEX or Gurobi.
Proposition 2 Suppose each edge weight we satisfies wmin 6 we 6 wmax, ∀e ∈ E. Let N be the number of
empirical edge measurements. Problem (5) is equivalent to

min
W,d,λ ,s,ηηη ,µµµ

λθ +
1
N

N

∑
i=1

si + γd

s.t. bk′ + 〈ak′ , ŵi〉+
|E|

∑
j=1

ηik′ j(wmax− ŵi j)+
|E|

∑
j=1

µik′ j(ŵi j−wmin)6 si,∀i 6 N,∀k′ ∈ {1,2},

‖ηηη ik′ −µµµ ik′ −ak′‖∗ 6 λ ,∀i 6 N,∀k′ ∈ {1,2},
ηi,k′, j > 0, ∀i 6 N,∀k′ ∈ {1,2},∀ j 6 |E|,
µi,k′, j > 0, ∀i 6 N,∀k′ ∈ {1,2},∀ j 6 |E|,
We =− ∑

k∈K (e)
yek−∑

c∈C
1(e ∈ c)zc,∀e,

a1 = W, b1 = 0, a2 = (1+
γ

α
)W, b2 =−

dγ

α
,d,λ ∈ R, s ∈ RN ,{y,z} ∈X .

(6)

4 EXPERIMENTS

Next we demonstrate the benefits of both the SSA-CVaR method of Section 3.1 and the DRO-CVaR
method of Section 3.2. For both of these experiments we use 32 randomly-generated exchange graphs
resembling the structure of real exchanges, using anonymized data from the United Network for Organ
Sharing (UNOS) US-wide kidney exchange. For additional information regarding the features available in
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UNOS data, we refer the reader to (OPTN-Data 2021). To reflect edge weight uncertainty, we define an
edge weight distribution inspired by real sources of uncertainty, described in the next section. To highlight
the differences between the SAA and DRO approaches, we consider two uncertainty paradigms. First,
in Section 4.2 we consider a setting where the empirical distribution is equivalent to the true underlying
distribution. In Section 4.3 we relax this assumption, and we draw edge weight measurements from a
different (noisy) distribution, to simulate a setting where the empirical distribution is not representative of
the true distribution. This is reflective of real-world settings where data is sparse, or the true distribution
is difficult to measure; these settings are the primary motivation for our DRO-CVaR approach.

4.1 Setting

Edge weight distribution: survival rate. We define a simple edge weight distribution based on the Living
Donor Kidney Profile Index (LKDPI), a recent metric (Massie, Leanza, Fahmy, Chow, Desai, Luo, King,
Bowring, and Segev 2016) that is now used as a decision support tool for kidney transplantation. Using
the method of (Li, Lieberman, Macke, Carrillo, Ho, Wellen, and Das 2019), we assume that the survival
rate of a donor organ is an exponential random variable, with mean proportional to the LKDPI. We define
a simple distribution by assuming that edge weights depend only on the donor LKDPI.

Each donor node is randomly assigned to have low LKDPI (14.93) or high LKDPI (59.37), each with
probability 1/2; this corresponds to the mean LKDPI plus/minus one standard deviation of the distribution
estimated by (Saidman, Roth, Sönmez, Ünver, and Delmonico 2006). After assigning an LKDPI for each
donor, we draw edge weight (i.e., survival time) from the exponential distribution defined in (Li, Lieberman,
Macke, Carrillo, Ho, Wellen, and Das 2019): we ∼ 14.78e−0.01239×LKDPI.

Stochastic and deterministic edges. In practice the variance of edge weight distributions can be very
different—some edge weights may be very uncertain, while others may be nearly constant (Massie, Leanza,
Fahmy, Chow, Desai, Luo, King, Bowring, and Segev 2016). To simulate this, we randomly assign edges
to be either stochastic (drawn from its underlying distribution) or deterministic (the edge weight is equal
to the first draw from its distribution). Note that we always define an edge distribution, but deterministic
edges only use a single draw from this distribution. In our experiments, half of all edges are deterministic
while the other half are probabilistic.

4.2 SAA-CVaR

In this setting, N edge weight measurements are made of each edge, and we assume that these measurements
come from the correct edge weight distribution. We compare three methods that use these N measurements:
our SAA-CVaR approach, a state-of-the-art Robust Optimization approach (McElfresh, Bidkhori, and
Dickerson 2019), and a non-robust matching algorithm which maximizes the sample mean edge weight.
We show that SAA-CVaR has better α% worst-case performance than both other methods. Figure 1.

Implementation details. We denote the SAA-CVaR approach of Section 3.1 as SAA. For each of the
32 exchange graphs, we simulate the LKDPI edge weight distribution; we simulate 4 different edge weight
distributions (randomly) for each graph (in effect, creating 4 different graph instances, each sharing the same
underlying structure). For each graph-distribution pair we simulate N = 200 draws (i.e., measurements)
from the edge weight distribution, and use these measurements to find optimal matchings using each of
the following methods: NR: maximize the sample mean edge weight (where the sample mean is calculated
over all N simulated weight measurements), RO the (non-distributionally-)robust optimization approach of
(McElfresh, Bidkhori, and Dickerson 2019), and SAA, our proposed approach. For RO we use parameter
Γ = 5, meaning that up to 5 edges may have realized weight of 0. For SAA we set α to 50, meaning
that this approach aims to maximize realized matching weight over the 50% worst-case outcomes.To vary
the balance between the mean matching weight and the worst-case objective we vary parameter γ , with
γ ∈ {0.1,1.0,10.0,100.0}. With γ = 0, SAA only optimizes the expected matching weight; as γ increases,
the objective is weighted more toward the α% worst-case outcomes.
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Metrics. To test these methods, we simulate 1000 realizations of each edge weight. Our approach is
designed to protect against the α% worst-case outcomes; so, we compare the means of the lowest α%
realized matching weights for each method. We use the following metric to compare each method

FRAC-NR≡ (µX
α −µ

NR
α )/µ

NR
α ,

where µX
α is the mean of the α% lowest-weight realizations for method X. We use the non-robust method

NR as a baseline to compare the previous robust-optimization-based method RO with our proposed method
SAA. In many cases the robust methods identified the same optimal matching as non-robust; in order to
highlight the differences between robust and non-robust, we remove these cases from our results.

Results. Figure 1 shows the simulation results. Recall that parameter γ moderates between the expected
edge weight and the CVaR objective (to maximize the α% worst-case edge weight); as demonstrated in
Fig. 1, when γ is small the behavior of SAA is similar to non-robust (i.e., FRAC-NR is almost always zero).
With larger γ , SAA prioritizes the CVaR objective, and achieves a higher weight for α% worst-case weight
(i.e., FRAC-NR is positive). Note that the robust optimization approach of (McElfresh, Bidkhori, and
Dickerson 2019) (RO) is far too conservative, and in fact achieves lower CVaR objective than non-robust.
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Figure 1: FRAC-NR for both the RO method due to McElfresh et al. (McElfresh, Bidkhori, and Dickerson 2019)
and our SAA method, for γ ∈ {0.1,1.0,10.0,100.0}.

4.3 DRO-CVaR

In this setting, unlike the previous section, we assume that edge weights may be drawn from an incorrect
distribution. This setting—where the true distribution is unknown or difficult to measure—is the primary
motivation for our distributionally robust approach, DRO-CVaR. We show that our DRO-CVaR approach
achieves better worst-case performance than both the Robust Optimization approach of (McElfresh, Bidkhori,
and Dickerson 2019) as well as our SAA approach (which is less conservative than DRO-CVaR). The main
results are plotted in Figure 2. In these experiments edge weight “measurements” are drawn from the true
edge weight distribution, while edge weight “realizations” have adversarial (negative) noise—to simulate
errors in edge weight measurements.

Implementation details. We denote the DRO-CVaR approach of Section 3.2 as DRO. For each
exchange graph, we simulate the LKDPI edge weight distribution; as before, we create 4 different edge
weight distributions. For each graph-distribution pair we simulate N = 20 measurements from the edge
distribution; these measurements are used by each matching approach. We use far smaller N in these
experiments because the MILP formulation for DRO grows polynomially in N, and is intractable for large
N (recall that the kidney exchange problem is NP-hard, though in practice small problems can be solved
easily).

To simulate errors in the empirical weight distribution, we add noise to the realized weights—which is
not present in the N measured weights provided to the matching methods. The DRO approach should protect
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against worst case deviations from the empirical distributions; for this reason we create the adversarial
case—where all noise is negative. After simulating each edge weight realization, we randomly assign half
of the edges to receive negative noise of −10 or −20, each with probability 1/2. As before, we simulate
1000 noisy realizations, and calculate FRAC-NR as described above. In these experiments we use α = 40
(rather than α = 50 as in the previous experiments) to make our approach more risk-averse, since edge
weights are more “noisy” in these experiments. In these experiment we fix γ = 10 to strongly prioritize the
CVaR objective. For the DRO approach we use θ ∈ {0.1,1,2,5,10,20}; the results are shown in Figure 2.
As before, we ignore cases where these methods identify the same matching as non-robust.

Results. There is far less variance between methods in these experiments, likely due to the strong
adversarial noise applied to each realization. However, it is clear that both SAA and DRO both achieve
better (higher) worst-case outcomes than RO. We also see that DRO achieves a better worst-case FRAC-NR
than both RO and SAA—which is expected, as DRO should protect against the worst-case outcome. That
worst-case gain is substantial compared to the RO method and more marginal compared to the SAA method.
However unlike our results in the previous section that were given access to a larger number of samples,
all methods in this data-sparse environment appear to perform nearly on par with non-robust under the
FRAC-NR measure. Next, we provide statistics about match composition under our methods.
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Figure 2: FRAC-NR for the RO method due to McElfresh et al. (McElfresh, Bidkhori, and Dickerson 2019), in
addition to our two new methods SAA, and DRO.

4.4 Comparisons of the Structures in Matchings

Here we provide two tables detailing the differences in the matchings produced by each method in the
experiments of the last two subsections. In short, these tables demonstrate robust methods tend to avoid
uncertain edges, even if this results in a lower average matching weight.

Matched edges. First, we present the number of each type of edge matched by each method. Our
experiments use four different edge types, which are randomly assigned based on each edge’s donor,
which we summarize as; high-weight deterministic (D-High), high-weight stochastic (S-High), low-weight
deterministic (D-Low), and low-weight stochastic (S-Low). Both D-High and S-High have mean weight
12.3, while D-Low and S-Low have mean weight 7.1. However, both D-High and D-Low are exponentially
distributed, meaning that the worst-case weight can be quite low (approaching zero) in any particular
realization. Our CVaR approach is designed to balance between the mean matching weight, and the
worst-case weight in α% of all possible outcomes. Thus, we expect that robust optimization approaches
should favor deterministic edges over probabilistic edges. Table 1 shows the number of each edge matched
by each method, compared with non-robust.

Intuitively, most robust methods match more deterministic edges (D-High and D-Low), and fewer
stochastic edges (S-High and S-Low) than non-robust. Notably, SAA tends to match more deterministic
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Table 1: Total number of edges of each type matched by each method. The difference between each method
and non-robust is indicated in parentheses.

Method D-High S-High D-Low S-Low

Non-Robust (baseline) 699 (0) 700 (0) 555 (0) 517 (0)
SAA (γ = 0.1) 706 (+7) 693 (-7) 558 (+3) 514 (-3)
SAA (γ = 1.0) 735 (+36) 661 (-39) 562 (+7) 514 (-3)
SAA (γ = 10.0) 747 (+48) 637 (-63) 571 (+16) 514 (-3)
DRO (γ = 10.0, θ = 0.1) 747 (+48) 637 (-63) 571 (+16) 514 (-3)
DRO (γ = 10.0, θ = 1.0) 749 (+50) 644 (-56) 555 (0) 505 (-12)
DRO (γ = 10.0, θ = 10.0) 573 (-126) 769 (+69) 515 (-40) 545 (+28)
RO (γ = 5) 640 (-59) 683 (-17) 568 (+13) 580 (+63)

edges as γ increases. It is also notable that methods DRO and RO do not strictly follow this trend. As θ

increases, DRO matches fewer determinisitc edges, and RO tend to match only low-weight edges (D-Low
and S-Low). This behavior helps explain Figures 2 and 3: in contrast to SAA, methods DRO and RO are
selecting edges with uncertain edge weights.

Cycle and chain structure. Next, we analyze the overall matching structure. In kidney exchange, the
solution (matching) is composed of cycles and chains of a fixed length. The composition of each matching
can be a useful indicator of the quality or robustness of a solution. Table 2 shows the total number of cycles
and chains of each length matched by each method, over all exchange graphs. There is little difference
between the types of structures produced by each method—i.e., the resulting cycle and chain lengths are
very similar. As in the case of edge existence uncertainty, where risk-averse methods will select smaller
structures due to their decreased fragility to edge failure, we see that nearly all robust methods result in
more 2-cycles and fewer 3-cycles than non-robust.

Table 2: Total number of cycles and chains of each length matched by each method; difference between
each method and non-robust is given in parentheses.

Method 2-cycles 3-cycles 1-chains 2-chains 3-chains 4-chains

Non-Robust (baseline) 198 (0) 433 (0) 48 (0) 50 (0) 52 (0) 118 (0)
SAA (γ = 0.1) 208 (+10) 428 (-5) 49 (+1) 44 (+1) 58 (+6) 115 (-3)
SAA (γ = 1.0) 203 (+5) 429 (-4) 44 (-4) 51 (-4) 59 (+7) 114 (-4)
SAA (γ = 10.0) 206 (+8) 425 (-8) 44 (-4) 47 (-4) 56 (+4) 119 (+1)
DRO (γ = 10.0, θ = 0.1) 203 (+5) 425 (-8) 45 (-3) 47 (-3) 55 (+3) 121 (+3)
DRO (γ = 10.0, θ = 1.0) 198 (0) 423 (-10) 45 (-3) 48 (-3) 57 (+5) 119 (+1)
DRO (γ = 10.0, θ = 10.0) 202 (+4) 412 (-21) 55 (+7) 33 (+7) 55 (+3) 119 (+1)
RO (γ = 5) 215 (+17) 418 (-15) 44 (-4) 51 (-4) 43 (-9) 128 (+10)

5 CONCLUSIONS & FUTURE RESEARCH

We proposed data-driven methods to solve the mean-risk kidney exchange model (2), which is a real-world
instantiation of the (cardinality-constrained) cycle packing problem. On realistic data drawn from a large,
fielded US-based kidney exchange, we validated that our methods strike a balance between protecting
against worst-case realizations and maintaining strong average-case performance. In many matching
applications—including kidney allocation-it is likely that uncertainty is correlated, due to medical and/or
non-medical reasons, with sensitive attributes such as race; past work has considered this in the deterministic
setting (Klimentova, Viana, Pedroso, and Santos 2020; Farnadi, St-Arnaud, Babaki, and Carvalho 2021),
and valuable future work could extend those approaches to our setting.
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